称区间$[i,j]$为普通区间,当且仅当$j-i\ge 3$​​​且其操作两次内不会变为给定区间

结论:若$[i,j]$为普通区间,则$[i,j]$和$[i+1,j-1]$​​​​​​​​​​的状态(是否先手必胜)相同

(关于这个结论的正确性,不难分类讨论得到)

由此,对于普通区间不断缩小使其变为非普通区间,而非普通区间暴力枚举其变化,直至其长度为1或变为普通区间,显然这类区间至多只有$o(n)$个,因此记忆化后总复杂度也为$o(n)$

综上,只需要能快速实现缩小的过程即可,注意到和是相同的,以和为第一关键字,左端点为第二关键字在所有第2类的非普通区间中二分即可

(暴力的过程中判定区间是否为特殊区间也可以二分)

最终,总复杂度为$o((n+q)\log n)$​,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 600005
4 int t,n,m,q,l,r,ans[N];
5 struct Data{
6 int l,r,p;
7 bool operator < (const Data &k)const{
8 return (l+r<k.l+k.r)||(l+r==k.l+k.r)&&(l<k.l);
9 }
10 bool operator == (const Data &k)const{
11 return (l==k.l)&&(r==k.r);
12 }
13 bool operator != (const Data &k)const{
14 return (l!=k.l)||(r!=k.r);
15 }
16 }a[N],b[N];
17 int find(int l,int r){
18 Data o=Data{l,r,0};
19 int p=lower_bound(b+1,b+m+1,o)-b;
20 if ((p>m)||(b[p]!=o))return -1;
21 return p;
22 }
23 int get_nex(int l,int r){
24 Data o=Data{l,r,0};
25 int p=lower_bound(b+1,b+m+1,o)-b;
26 if ((p<=m)&&(o.l+o.r==b[p].l+b[p].r))return b[p].l-o.l;
27 return (r-l-1>>1);
28 }
29 bool calc(int l,int r){
30 int p=find(l,r);
31 if (p>0){
32 if (b[p].p>=0)return b[p].p;
33 if (ans[p]>=0)return ans[p];
34 }
35 if (l==r)return 0;
36 if ((r-l>=3)&&(p<0)){
37 p=get_nex(l,r);
38 return calc(l+p,r-p);
39 }
40 int s=((calc(l,r-1)&calc(l+1,r))^1);
41 if (p>0)ans[p]=s;
42 return s;
43 }
44 int main(){
45 scanf("%d",&t);
46 while (t--){
47 scanf("%d%d",&n,&q);
48 for(int i=1;i<=n;i++){
49 scanf("%d%d%d",&a[i].l,&a[i].r,&a[i].p);
50 a[i+n]=Data{a[i].l-1,a[i].r,-1};
51 a[i+n*2]=Data{a[i].l-2,a[i].r,-1};
52 a[i+n*3]=Data{a[i].l,a[i].r+1,-1};
53 a[i+n*4]=Data{a[i].l,a[i].r+2,-1};
54 a[i+n*5]=Data{a[i].l-1,a[i].r+1,-1};
55 }
56 sort(a+1,a+n*6+1);
57 m=0;
58 for(int i=1;i<=n*6;i++){
59 if ((a[i].l<=0)||(a[i].r>1e9))continue;
60 if ((!m)||(b[m]!=a[i]))b[++m]=a[i];
61 else{
62 if (b[m].p<0)b[m].p=a[i].p;
63 }
64 }
65 for(int i=1;i<=m;i++)ans[i]=-1;
66 for(int i=1;i<=q;i++){
67 scanf("%d%d",&l,&r);
68 printf("%d",calc(l,r));
69 }
70 printf("\n");
71 }
72 return 0;
73 }

[hdu7035]Game的更多相关文章

随机推荐

  1. Arcscene教程

    ​ ​ ​ ​ ​ ​ ​ ​ ​ ​​ ​ 筛选​ ​ ​ ​ ​ ​ ​ ​ 看不清的话可以进行如下操作:右键-->属性-->符号系统-->把高程前面的对号取消-->添加- ...

  2. python中return的返回和执行

    1 打印函数名和打印函数的执行过程的区别 例子1.1 def a(): print(111) print(a) # 打印a函数的内存地址,不会对a函数有影响,a函数不会执行 print(a()) # ...

  3. Pytorch 的安装

    GPU版本的安装 Windows平台 CPU 版本安装 conda install pytorch torchvision cpuonly -c puython Windows平台需安装VC,需要的联 ...

  4. Android QMUI实战:沉浸式/适配状态栏

    近期研究QMUI换肤的实现,顺便分析了下QMUI的沉浸式. 网上已有很多关于QMUI实现页面沉浸式的文章,简而言之:复杂了. 本期,我们仅通过几行代码,即可完美实现页面沉浸式效果,并轻松匹配换肤的色彩 ...

  5. NOIP模拟79

    T1 F 解题思路 因为每个点会产生贡献当且仅当它在可以到他的点之前被删除,并且此题遵守期望的线性性. 因此设所有可以到达点 \(i\) 的数量为 \(c_i\) 那么答案就是 \(\sum \fra ...

  6. keras框架下的深度学习(二)二分类和多分类问题

    本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分 ...

  7. Linux过来人帮你理清学习思路

    很多同学接触linux不多,对linux平台的开发更是一无所知. 而现在的趋势越来越表明,作为一个优秀的软件开发人员,或计算机it行业从业人员,="" 掌握linux是一种很重要的 ...

  8. STM32时钟系统之利用 systick 定时器来实现准确的延时。

    本篇文章带着大家来认识一下 STM32 的时钟系统,以及利用 systick 定时器来实现一个比较准确的延时. 我们首先从时钟说起,时钟在MCU中的作用,就好比于人类的心脏一样不可或缺.STM32 的 ...

  9. Des加密解密(公共方法)

    1 public class Des 2 { 3 public static string Encrypt(string message, string key) 4 { 5 DES des = ne ...

  10. swagger3.0(springboot)消除basic-error-controller

    1.新建springboot项目,可以通过https://start.spring.io/快速生成springboot项目. 2.引入jar依赖: <dependency> <gro ...