[hdu7035]Game
称区间$[i,j]$为普通区间,当且仅当$j-i\ge 3$且其操作两次内不会变为给定区间
结论:若$[i,j]$为普通区间,则$[i,j]$和$[i+1,j-1]$的状态(是否先手必胜)相同
(关于这个结论的正确性,不难分类讨论得到)
由此,对于普通区间不断缩小使其变为非普通区间,而非普通区间暴力枚举其变化,直至其长度为1或变为普通区间,显然这类区间至多只有$o(n)$个,因此记忆化后总复杂度也为$o(n)$
综上,只需要能快速实现缩小的过程即可,注意到和是相同的,以和为第一关键字,左端点为第二关键字在所有第2类的非普通区间中二分即可
(暴力的过程中判定区间是否为特殊区间也可以二分)
最终,总复杂度为$o((n+q)\log n)$,可以通过


1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 600005
4 int t,n,m,q,l,r,ans[N];
5 struct Data{
6 int l,r,p;
7 bool operator < (const Data &k)const{
8 return (l+r<k.l+k.r)||(l+r==k.l+k.r)&&(l<k.l);
9 }
10 bool operator == (const Data &k)const{
11 return (l==k.l)&&(r==k.r);
12 }
13 bool operator != (const Data &k)const{
14 return (l!=k.l)||(r!=k.r);
15 }
16 }a[N],b[N];
17 int find(int l,int r){
18 Data o=Data{l,r,0};
19 int p=lower_bound(b+1,b+m+1,o)-b;
20 if ((p>m)||(b[p]!=o))return -1;
21 return p;
22 }
23 int get_nex(int l,int r){
24 Data o=Data{l,r,0};
25 int p=lower_bound(b+1,b+m+1,o)-b;
26 if ((p<=m)&&(o.l+o.r==b[p].l+b[p].r))return b[p].l-o.l;
27 return (r-l-1>>1);
28 }
29 bool calc(int l,int r){
30 int p=find(l,r);
31 if (p>0){
32 if (b[p].p>=0)return b[p].p;
33 if (ans[p]>=0)return ans[p];
34 }
35 if (l==r)return 0;
36 if ((r-l>=3)&&(p<0)){
37 p=get_nex(l,r);
38 return calc(l+p,r-p);
39 }
40 int s=((calc(l,r-1)&calc(l+1,r))^1);
41 if (p>0)ans[p]=s;
42 return s;
43 }
44 int main(){
45 scanf("%d",&t);
46 while (t--){
47 scanf("%d%d",&n,&q);
48 for(int i=1;i<=n;i++){
49 scanf("%d%d%d",&a[i].l,&a[i].r,&a[i].p);
50 a[i+n]=Data{a[i].l-1,a[i].r,-1};
51 a[i+n*2]=Data{a[i].l-2,a[i].r,-1};
52 a[i+n*3]=Data{a[i].l,a[i].r+1,-1};
53 a[i+n*4]=Data{a[i].l,a[i].r+2,-1};
54 a[i+n*5]=Data{a[i].l-1,a[i].r+1,-1};
55 }
56 sort(a+1,a+n*6+1);
57 m=0;
58 for(int i=1;i<=n*6;i++){
59 if ((a[i].l<=0)||(a[i].r>1e9))continue;
60 if ((!m)||(b[m]!=a[i]))b[++m]=a[i];
61 else{
62 if (b[m].p<0)b[m].p=a[i].p;
63 }
64 }
65 for(int i=1;i<=m;i++)ans[i]=-1;
66 for(int i=1;i<=q;i++){
67 scanf("%d%d",&l,&r);
68 printf("%d",calc(l,r));
69 }
70 printf("\n");
71 }
72 return 0;
73 }
[hdu7035]Game的更多相关文章
随机推荐
- java 从零开始手写 RPC (01) 基于 websocket 实现
RPC 解决的问题 RPC 主要是为了解决的两个问题: 解决分布式系统中,服务之间的调用问题. 远程调用时,要能够像本地调用一样方便,让调用者感知不到远程调用的逻辑. 这一节我们来学习下如何基于 we ...
- B站视频:CocosCreator Bundle 特性三个实例详解,轻松实现大厅子游戏模式
详细内容:https://forum.cocos.org/t/topic/112146
- nvidia jetson xavier 风扇开机自启动
作者声明 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 原文链接:https://www.cnblogs.com/phoenixash/p/15 ...
- 洛谷3571 POI2014 SUP-Supercomputer (斜率优化)
一道神仙好题. 首先看到有多组\(k\),第一反应就是离线. 考虑贪心. 我们每次一定是尽量选择有儿子的节点.以便于我们下一次扩展. 但是对于一个\(k\),每次贪心的复杂度是\(O(n)\) 总复杂 ...
- django-admin和django-admin.py的区别
问题 django初学者在使用django-admin创建项目时容易出现无法创建的错误,这是因为网上很多教程用的都是django-admin.py创建的项目,不出意外的话,你输入相同的命令会发现项目没 ...
- BUAA SE 软件案例分析-CSDN
Q A 这个作业属于哪个课程 2020春季计算机学院软件工程(罗杰 任健) 这个作业的要求在哪里 个人博客作业-软件案例分析 我在这个课程的目标是 系统地学习软件工程开发知识,掌握相关流程和技术,提升 ...
- gdal3.1.0+VS2017+geos+kml编译总结
1.简介 gdal3.1.0编译过程中必须依赖proj,编译gdal必须要编译proj,proj的编译需要sqlite3,因此想要编译gdal3.1.0需要先编译proj和sqlite3 2.关于sq ...
- hdu 1160 FatMouse's Speed(最长不下降子序列+输出路径)
题意: FatMouse believes that the fatter a mouse is, the faster it runs. To disprove this, you want to ...
- Vue面试题01
说出vue常用的指令: v-text, v-html, v-bind, v-for, v-if, v-else, v-else-if, v-show, v-on, 谈谈你对MVC ...
- index 首页
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...