iota 是 Go 语言的一个保留字,用作常量计数器。由于 iota 具有自增特性,所以可以简化数字增长的常量定义。

iota 是一个具有魔法的关键字,往往令初学者难以理解其原理和使用方法。

本文会从书写方法、使用场景、实现原理以及优缺点等各方面剖析 iota 关键字。

1. 书写方法

正确写法:

const (
FirstItem = iota
SecondItem
ThirdItem
)
// 或者
const SingleItem = iota

错误写法:

var FirstItem = iota
// 或者
println(iota)

iota 只能用于常量表达式,而且必须在 const 代码块中出现,不允许出现在其它位置。

2. 使用场景

iota 的主要使用场景用于枚举。Go 语言的设计原则追求极尽简化,所以没有枚举类型,没有 enum关键字。

Go 语言通常使用常量定义代替枚举类型,于是 iota 常常用于其中,用于简化代码。

例如:

package main

const (
B = 1 << (10 * iota) // 1 << (10*0)
KB // 1 << (10*1)
MB // 1 << (10*2)
GB // 1 << (10*3)
TB // 1 << (10*4)
PB // 1 << (10*5)
EB // 1 << (10*6)
ZB // 7 << (10*5)
) func main() {
println(B, KB, MB, GB, TB)
}

输出结果:

1 1024 1048576 1073741824

我们也可以直接这样书写这段代码:

  const (
B = 1
KB = 1024
MB = 1048576
GB = 1073741824
...
)

两段代码对比来看,使用 iota 的代码显然简洁优雅很多。不使用 iota 的代码,对于代码洁癖者来说,简直就是一坨,不可接受。

而 Go 语言的发明者,恰恰具有代码洁癖,而且还是深度洁癖。Go 语言设计初衷之一:追求简洁优雅。

3. iota 原理

iota 源码在 Go 语言代码库中,只有一句定义语句,位于内建文件 go/src/builtin/builtin.go 中:

const iota = 0 // Untyped int.

iota 是一个预声明的标识符,它的值是 0。 在 const 常量声明中,作为当前 const 代码块中的整数序数。

从 Go 语言代码库的代码看,iota 只是一个简单的整数 0,为什么能够作为常量计数器,进行常量自增呢?它的源码到底在哪里?

我们做一个小试验,就会理解其中的道理,看一段代码:

package main

const (
FirstItem = iota
SecondItem
ThirdItem
) func main() {
println(FirstItem)
println(SecondItem)
println(ThirdItem)
}

非常简单,就是打印 FirstItem,SecondItem,ThirdItem。

编译上述代码:

go tool compile -N -l main.go

使用 -N -l 编译参数用于禁止内联和优化,防止编译器优化和简化代码,弄乱次序。这样便于阅读汇编代码。

导出汇编代码:

go tool objdump main.o

截取部分结果如下:

TEXT %22%22.main(SB) gofile../Users/wangzebin/test/test/main.go
...
main.go:10 MOVQ $0x0, 0(SP) // 对应源码 println(FirstItem)
main.go:10 CALL 0x33b [1:5]R_CALL:runtime.printint
...
main.go:11 MOVQ $0x1, 0(SP) // 对应源码 println(SecondItem)
main.go:11 CALL 0x357 [1:5]R_CALL:runtime.printint
...
main.go:11 MOVQ $0x2, 0(SP) // 对应源码 println(ThirdItem)
main.go:11 CALL 0x373 [1:5]R_CALL:runtime.printint
...

编译之后,对应的常量 FirstItem、SecondItem 和 ThirdItem,分别替换为$0x0、$0x1 和 $0x2。

这说明:Go代码中定义的常量,在编译时期就会被替换为对应的常量。当然 iota,也不可避免地在编译时期,按照一定的规则,被替换为对应的常量。

所以,Go 语言源码库中是不会有 iota 源码了,它的魔法在编译时期就已经施展完毕。也就是说,解释 iota 的代码包含在 go 这个命令和其调用的组件中。

如果你要阅读它的源码,准确的说,阅读处理 iota 关键字的源码,需要到 Go 工具源码库中寻找,而不是 Go 核心源码库。

4. iota 规则

使用 iota,虽然可以书写简洁优雅的代码,但对于不熟悉规则的人来讲,又带来的很多不必要的麻烦和误解。

对于引入 iota,到底好是不好,每个人都有自己的评价。实际上,有些不常用的写法,甚至有些卖弄编写技巧的的写法,并不是设计者的初衷。

大多数情况下,我们还是使用最简单最明确的写法,iota 只是提供了一种选择而已。一个工具使用的好坏,取决于使用它的人,而不是工具本身。

以下是 iota 编译规则:

1) 依赖 const

iota 依赖于 const 关键字,每次新的 const 关键字出现时,都会让 iota 初始化为0。

const a = iota // a=0
const (
b = iota // b=0
c // c=1
)

2) 按行计数

iota 按行递增加 1。

const (
a = iota // a=0
b // b=1
c // c=2
)

3) 多个iota

同一 const 块出现多个 iota,只会按照行数计数,不会重新计数。

  const (
a = iota // a=0
b = iota // b=1
c = iota // c=2
)

与上面的代码完全等同,b 和 c 的 iota 通常不需要写。

4) 空行处理

空行在编译时期首先会被删除,所以空行不计数。

  const (
a = iota // a=0 b // b=1
c // c=2
)

5) 跳值占位

占位 "_",它不是空行,会进行计数,起到跳值作用。

  const (
a = iota // a=0
_ // _=1
c // c=2
)

6) 开头插队

开头插队会进行计数。

const (
i = 3.14 // i=3.14
j = iota // j=1
k = iota // k=2
l // l=3
)

7) 中间插队

中间插队会进行计数。

const (
i = iota // i=0
j = 3.14 // j=3.14
k = iota // k=2
l // l=3
)

8) 一行多个iota

一行多个iota,分别计数。

const (
i, j = iota, iota // i=0,j=0
k, l // k=1,l=1
)

参考资料:

1. go语言编程

2. 编程宝库

Go iota 原理和源码剖析的更多相关文章

  1. [Spark内核] 第32课:Spark Worker原理和源码剖析解密:Worker工作流程图、Worker启动Driver源码解密、Worker启动Executor源码解密等

    本課主題 Spark Worker 原理 Worker 启动 Driver 源码鉴赏 Worker 启动 Executor 源码鉴赏 Worker 与 Master 的交互关系 [引言部份:你希望读者 ...

  2. Spark Worker原理和源码剖析解密:Worker工作流程图、Worker启动Driver源码解密、Worker启动Executor源码解密等

    本课主题 Spark Worker 原理 Worker 启动 Driver 源码鉴赏 Worker 启动 Executor 源码鉴赏 Worker 与 Master 的交互关系 Spark Worke ...

  3. Go defer 原理和源码剖析

    Go 语言中有一个非常有用的保留字 defer,它可以调用一个函数,该函数的执行被推迟到包裹它的函数返回时执行. defer 语句调用的函数,要么是因为包裹它的函数执行了 return 语句,到达了函 ...

  4. Kubernetes Job Controller 原理和源码分析(一)

    概述什么是 JobJob 入门示例Job 的 specPod Template并发问题其他属性 概述 Job 是主要的 Kubernetes 原生 Workload 资源之一,是在 Kubernete ...

  5. Kubernetes Job Controller 原理和源码分析(二)

    概述程序入口Job controller 的创建Controller 对象NewController()podControlEventHandlerJob AddFunc DeleteFuncJob ...

  6. [Spark內核] 第41课:Checkpoint彻底解密:Checkpoint的运行原理和源码实现彻底详解

    本课主题 Checkpoint 运行原理图 Checkpoint 源码解析 引言 Checkpoint 到底是什么和需要用 Checkpoint 解决什么问题: Spark 在生产环境下经常会面临 T ...

  7. Dubbo原理和源码解析之服务引用

    一.框架设计 在官方<Dubbo 开发指南>框架设计部分,给出了引用服务时序图: 另外,在官方<Dubbo 用户指南>集群容错部分,给出了服务引用的各功能组件关系图: 本文将根 ...

  8. Dubbo原理和源码解析之标签解析

    一.Dubbo 配置方式 Dubbo 支持多种配置方式: XML 配置:基于 Spring 的 Schema 和 XML 扩展机制实现 属性配置:加载 classpath 根目录下的 dubbo.pr ...

  9. Dubbo原理和源码解析之“微内核+插件”机制

    github新增仓库 "dubbo-read"(点此查看),集合所有<Dubbo原理和源码解析>系列文章,后续将继续补充该系列,同时将针对Dubbo所做的功能扩展也进行 ...

随机推荐

  1. SQL Server 命令备忘录(持续更新...)

    1.删除表内容并重置ID truncate table 表名 2.开启SqlDependency监控数据库 在数据中执行以下查询: SELECT is_broker_enabled FROM sys. ...

  2. Python:安装opencv出现错误Could not find a version that satisfies the requirement numpy==1.13.3 (from versions: 1.14.5, 1.14.6, 1.15.0rc2, 1.15.0, 1.15.1, 1.15.2, 1.15.3, 1.15.4, 1.16.0rc1, 1.16.0rc2,

    安装opencv的时候,出现numpy的版本不匹配,卸载了不匹配的版本,重新安装却是一点用都没有,后面尝试了一下这里的提示pip更新,居然安装成功了,看来pip的版本过低真是误事啊. 报错是: Cou ...

  3. ansible远程运维操作

    1.command 用于查看文件内容,查看磁盘,内存,启动命令等纯命令信息 ansible portal -m command -a "cat /test1/test"2.ping ...

  4. Java基础之(十三):类与对象

    初识面向对象 面向对象 & 面向过程 面向过程思想 步骤清晰简单,第一步做什么,第二步做什么..... 面向过程适合处理一些较为简单的问题 面向对象思想 ​ 物以类聚,分类的思维模式,思考问题 ...

  5. 每日总结:Java课堂测试第三阶段第二次优化 (四则运算) (2021.9.22)

    package jisuan2; import java.util.*;import java.util.Scanner; public class xiaoxue { public static v ...

  6. WPF实现Win10汉堡菜单

    WPF开发者QQ群: 340500857  | 微信群 -> 进入公众号主页 加入组织 前言 有小伙伴提出需要实现Win10汉堡菜单效果. 由于在WPF中没有现成的类似UWP的汉堡菜单,所以我们 ...

  7. 初学Python-day7 案例(乘法口诀 已更新!!)

    案例::(乘法口诀)  用for循环做乘法口诀: 1 # 第一种 2 for i in range(1, 10): 3 for j in range(1, i + 1): 4 print('{} * ...

  8. Python小工具:据说这是搜索文件最快的工具!没有之一!一起感受下......

    电脑自带的搜索文件功能相信大家都体验过,那是真的慢,等它找到文件,我都打完一把游戏了! 那必须不能忍,于是我自己做了一个文件搜索工具,犄角旮旯的文件都能一秒钟搜索出来的那种! 保证能把你们男(女)朋友 ...

  9. 【UE4 C++】 解析与构建 Json 数据

    准备条件 Json 格式 { "Players":[ { "Name": "Player1", "health": 20 ...

  10. nssm.exe使用方法

    nssm no-sucking service manager 1. 安装服务命令 nssm install <servicename> nssm install <servicen ...