2019.03.12 codeforces739E. Gosha is hunting(dp凸优化)
传送门
题意:nnn个物品,有aaa个XXX道具和bbb个YYY道具,XXX道具移走第iii个物品概率为pip_ipi,YYY道具移走第iii个道具概率为uiu_iui。
对于每个物品每种道具最多用一次且只能被移走一次,现在问对于道具的所有分配方案中移走物品的总个数的期望最大值是多少。
思路:
有一个很显然的O(n3)dp:fi,j,kO(n^3)dp:f_{i,j,k}O(n3)dp:fi,j,k表示前iii个物品用jjj个XXX道具和kkk个YYY道具的最大期望。
然后暴力代码如下:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int rlen=1<<18|1;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=getchar();
return ans;
}
const int N=205;
int n,a,b;
double p[N],u[N],f[N][N][N];
int main(){
n=read(),a=read(),b=read();
for(ri i=1;i<=n;++i)scanf("%lf",&p[i]);
for(ri i=1;i<=n;++i)scanf("%lf",&u[i]);
for(ri i=1;i<=n;++i){
for(ri j=0;j<=a;++j)for(ri k=0;k<=b;++k){
f[i][j][k]=f[i-1][j][k];
if(j)f[i][j][k]=max(f[i][j][k],f[i-1][j-1][k]+p[i]);
if(k)f[i][j][k]=max(f[i][j][k],f[i-1][j][k-1]+u[i]);
if(j&&k)f[i][j][k]=max(f[i][j][k],f[i-1][j-1][k-1]+1-(1-p[i])*(1-u[i]));
}
}
printf("%.6lf",f[n][a][b]);
return 0;
}
然而这显然是不够优秀的
因此我们发现可以对后两维都进行一次凸优化,复杂度O(nlogn2)O(nlog_n^2)O(nlogn2)
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=getchar();
return ans;
}
const double eps=1e-8;
const int N=2005;
int n,a,b;
double p[N],u[N];
struct data{
double v;
int a,b;
data(double v=0,int a=0,int b=0):v(v),a(a),b(b){}
friend inline data operator+(const data&a,const data&b){return data(a.v+b.v,a.a+b.a,a.b+b.b);}
}f[N];
inline void solve(double w1,double w2){
f[0]=data(0,0,0);
for(ri i=1;i<=n;++i){
f[i]=f[i-1];
if(f[i-1].v+p[i]-w1>f[i].v)f[i]=f[i-1]+data(p[i]-w1,1,0);
if(f[i-1].v+u[i]-w2>f[i].v)f[i]=f[i-1]+data(u[i]-w2,0,1);
if(f[i-1].v+p[i]+u[i]-p[i]*u[i]-w1-w2>f[i].v)f[i]=f[i-1]+data(p[i]+u[i]-p[i]*u[i]-w1-w2,1,1);
}
}
int main(){
n=read(),a=read(),b=read();
for(ri i=1;i<=n;++i)scanf("%lf",&p[i]);
for(ri i=1;i<=n;++i)scanf("%lf",&u[i]);
double l1=0,r1=1,l2,r2;
while(r1-l1>=eps){
double mid1=(l1+r1)/2;
l2=0,r2=1;
while(r2-l2>=eps){
double mid2=(l2+r2)/2;
solve(mid1,mid2);
f[n].b>b?l2=mid2:r2=mid2;
}
solve(mid1,r2);
f[n].a>a?l1=mid1:r1=mid1;
}
solve(r1,r2);
printf("%.6lf",f[n].v+r1*a+r2*b);
return 0;
}
2019.03.12 codeforces739E. Gosha is hunting(dp凸优化)的更多相关文章
- 【Codeforces 321E / BZOJ 5311】【DP凸优化】【单调队列】贞鱼
目录 题意: 输入格式 输出格式 思路: DP凸优化的部分 单调队列转移的部分 坑点 代码 题意: 有n条超级大佬贞鱼站成一行,现在你需要使用恰好k辆车把它们全都运走.要求每辆车上的贞鱼在序列中都是连 ...
- 「学习笔记」wqs二分/dp凸优化
[学习笔记]wqs二分/DP凸优化 从一个经典问题谈起: 有一个长度为 \(n\) 的序列 \(a\),要求找出恰好 \(k\) 个不相交的连续子序列,使得这 \(k\) 个序列的和最大 \(1 \l ...
- dp凸优化/wqs二分学习笔记(洛谷4383 [八省联考2018]林克卡特树lct)
qwq 安利一个凸优化讲的比较好的博客 https://www.cnblogs.com/Gloid/p/9433783.html 但是他的暴力部分略微有点问题 qwq 我还是详细的讲一下这个题+这个知 ...
- CF739E Gosha is hunting DP+wqs二分
我是从其他博客里看到这题的,上面说做法是wqs二分套wqs二分?但是我好懒呀,只用了一个wqs二分,于是\(O(nlog^2n)\)→\(O(n^2logn)\) 首先我们有一个\(O(n^3)\)的 ...
- Codeforces.739E.Gosha is hunting(DP 带权二分)
题目链接 \(Description\) 有\(n\)只精灵,两种精灵球(高级和低级),每种球能捕捉到第\(i\)只精灵的概率已知.求用\(A\)个低级球和\(B\)个高级球能捕捉到精灵数的最大期望. ...
- Codeforces739E Gosha is hunting
题意:现在有n个精灵,两种精灵球各m1和m2个,每个精灵单独使用第一种精灵球有pi的概率被捕获,单独使用第二种精灵球有ui的概率被捕获,同时使用有1-(1-pi)*(1-ui)的概率被捕获.一种精灵球 ...
- 2019.03.09 codeforces833B. The Bakery(线段树优化dp)
传送门 线段树优化dpdpdp入门题. 要求把nnn个数分成kkk段,每段价值为里面不相同的数的个数,求所有段的价值之和最大值.n≤35000,k≤50n\le35000,k\le50n≤35000, ...
- GCN代码分析 2019.03.12 22:34:54字数 560阅读 5714 本文主要对GCN源码进行分析。
GCN代码分析 1 代码结构 . ├── data // 图数据 ├── inits // 初始化的一些公用函数 ├── layers // GCN层的定义 ├── metrics // 评测指标 ...
- 洛谷P4383 [八省联考2018]林克卡特树lct(DP凸优化/wqs二分)
题目描述 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的迷你挑战. 游戏中有一个叫做“LCT” 的挑 ...
随机推荐
- week05 codelab01 Babel ES6 webpack Nodejsserver等
Babel 他出现的原因就是很多浏览器还未完全兼容ES6 需要将你写的ES6的内容转换成ES5让浏览器兼容运行 ES5和ES6相比出现很多新内容 比如拼接字符串 ES6可以` ` 里面如果引用变量就用 ...
- spring boot常用注解小计
@Async 需要执行异步方法时,在方法上加上@Async之后,底层使用多线程技术 .启动类上需要加上 @EnableAsync 注意:异步执行方法,不能与引用方法同在一个类里 @Transactio ...
- bash小技巧1 获取文件当前路径
我们linux获取文件当前路径一般问 #逼格不够高 [root@xxxx]# pwd 高逼格 SHELL_FOLDER=$(dirname $(readlink -f "$0"))
- 项目(八) Jenkins持续集成与构建
Jenkins环境搭建 由于Jenkins是依赖于java的,所以先介绍java环境的搭建 1)使用官方的二进制包解压安装,官方二进制包的下载地址:http://www.oracle.com/tech ...
- 大数据入门到精通16--hive 的条件语句和聚合函数
一.条件表达 case when ... then when .... then ... when ... then ...end select film_id,rpad(title,20," ...
- Oracle获取一周前,一个月前,一年前, 本周,本月,当年的日期
1.获取当前时间一周前的日期 ' day from dual 类似的 --当前时间减去7分钟的时间 ' MINUTE from dual --当前时间减去7小时的时间 ' hour from dual ...
- IO输入输出流
在Java中进行文件的读写,Java IO流是必备的知识. IO流指 的是输入输出流,用来处理设备上的数据.这里的设备指硬盘,内存,键盘录入,网络传输等. 按处理数据类型来分:字节流和字符流. 按流的 ...
- sql语句order by排序问题
根据某个字段的值排序,等于这个值的放最前面,不等的放后面 select * from [DTS_Interface] order by case when from_tag_name='木质饰条' t ...
- opencv关于Mat类中的Scalar()---颜色赋值
这个 CvScalar就是一个可以用来存放4个double数值的数组(O'Reilly的书上写的是4个整型成员):一般用来存放像素值(不一定是灰度值哦)的,最多可以存放4个通道的. typedef s ...
- tiny4412 --Uboot移植(6) SD卡驱动,启动内核
开发环境:win10 64位 + VMware12 + Ubuntu14.04 32位 工具链:linaro提供的gcc-linaro-6.1.1-2016.08-x86_64_arm-linux-g ...