原文地址:https://blog.csdn.net/bitcarmanlee/article/details/82320853

1.softmax初探
在机器学习尤其是深度学习中,softmax是个非常常用而且比较重要的函数,尤其在多分类的场景中使用广泛。他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1。
首先我们简单来看看softmax是什么意思。顾名思义,softmax由两个单词组成,其中一个是max。对于max我们都很熟悉,比如有两个变量a,b。如果a>b,则max为a,反之为b。用伪码简单描述一下就是 if a > b return a; else b。
另外一个单词为soft。max存在的一个问题是什么呢?如果将max看成一个分类问题,就是非黑即白,最后的输出是一个确定的变量。更多的时候,我们希望输出的是取到某个分类的概率,或者说,我们希望分值大的那一项被经常取到,而分值较小的那一项也有一定的概率偶尔被取到,所以我们就应用到了soft的概念,即最后的输出是每个分类被取到的概率。
 
2.softmax的定义
首先给一个图,这个图比较清晰地告诉大家softmax是怎么计算的。
(图片来自网络)
假设有一个数组V,ViVi表示V中的第i个元素,那么这个元素的softmax值为:
Si=ei∑jejSi=ei∑jej
该元素的softmax值,就是该元素的指数与所有元素指数和的比值。
这个定义可以说很简单,也很直观。那为什么要定义成这个形式呢?原因主要如下。
1.softmax设计的初衷,是希望特征对概率的影响是乘性的。
2.多类分类问题的目标函数常常选为cross-entropy。即L=−∑ktk⋅lnP(y=k)L=−∑ktk⋅lnP(y=k),其中目标类的tktk为1,其余类的tktk为0。
在神经网络模型中(最简单的logistic regression也可看成没有隐含层的神经网络),输出层第i个神经元的输入为ai=∑dwidxdai=∑dwidxd。
神经网络是用error back-propagation训练的,这个过程中有一个关键的量是∂L/∂αi∂L/∂αi。后面我们会进行详细推导。
3.softmax求导
前面提到,在多分类问题中,我们经常使用交叉熵作为损失函数
Loss=−∑itilnyiLoss=−∑itilnyi
其中,titi表示真实值,yiyi表示求出的softmax值。当预测第i个时,可以认为ti=1ti=1。此时损失函数变成了:
Lossi=−lnyiLossi=−lnyi
接下来对Loss求导。根据定义:
yi=ei∑jejyi=ei∑jej
我们已经将数值映射到了0-1之间,并且和为1,则有:
ei∑jej=1−∑j≠iej∑jejei∑jej=1−∑j≠iej∑jej
接下来开始求导
∂Lossi∂i=−∂lnyi∂i=∂(−lnei∑jej)∂i=−1ei∑jej⋅∂(ei∑jej)∂i=−∑jejei⋅∂(1−∑j≠iej∑jej)∂i=−∑jejei⋅(−∑j≠iej)⋅∂(1∑jej)∂i=∑jej⋅∑j≠iejei⋅−ei(∑jej)2=∑j≠iej∑jej
=−(1−ei∑jej)=yi−1∂Lossi∂i=−∂lnyi∂i=∂(−lnei∑jej)∂i=−1ei∑jej⋅∂(ei∑jej)∂i
=−∑jejei⋅∂(1−∑j≠iej∑jej)∂i=−∑jejei⋅(−∑j≠iej)⋅∂(1∑jej)∂i=∑jej⋅∑j≠iejei⋅−ei(∑jej)2=∑j≠iej∑jej
=−(1−ei∑jej)=yi−1
上面的结果表示,我们只需要正想求出yiyi,将结果减1就是反向更新的梯度,导数的计算是不是非常简单!
 
4.softmax VS k个二元分类器
如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。
参考文献:
1.https://www.zhihu.com/question/40403377
2.http://deeplearning.stanford.edu/wiki/index.php/Softmax回归

softmax详解的更多相关文章

  1. softmax函数详解

    答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...

  2. [转]softmax函数详解

    答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softm ...

  3. CNN详解

    CNN详解 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7450413.html 前言 这篇博客主要就是卷积神经网络(CNN) ...

  4. 基于双向BiLstm神经网络的中文分词详解及源码

    基于双向BiLstm神经网络的中文分词详解及源码 基于双向BiLstm神经网络的中文分词详解及源码 1 标注序列 2 训练网络 3 Viterbi算法求解最优路径 4 keras代码讲解 最后 源代码 ...

  5. 深度学习之卷积神经网络(CNN)详解与代码实现(一)

    卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...

  6. 代码详解:TensorFlow Core带你探索深度神经网络“黑匣子”

    来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflo ...

  7. 第三十一节,目标检测算法之 Faster R-CNN算法详解

    Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal network ...

  8. 第三十节,目标检测算法之Fast R-CNN算法详解

    Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2 ...

  9. 第二十九节,目标检测算法之R-CNN算法详解

    Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmenta ...

随机推荐

  1. 免费开源.net的pdf操作控件PdfiumViewer

    最终我找到了pdffiumViewer.开源免费的.net组件. 亲测,可以按第一个下载地址,改写开发.如果对源码感兴趣,可以上GitHub网站 效果图:  1.源代码下载地址: https://do ...

  2. 转: Linux 系统调用sysconf 获取系统配置信息

    1.前言 linux提供了sysconf系统调用可以获取系统的cpu个数和可用的cpu个数. 2.sysconf  函数 man一下sysconf,解释这个函数用来获取系统执行的配置信息.例如页大小. ...

  3. SQL语句实例集合

    SQL语句实例 表操作     例 1  对于表的教学管理数据库中的表 STUDENTS ,可以定义如下: CREATE  TABLE  STUDENTS (SNO      NUMERIC (6, ...

  4. mysql 常用的命令集合

    1.创建表 CREATE TABLE `cardPcitrue`( `id` INT AUTO_INCREMENT NOT NULL PRIMARY KEY COMMENT'编号', `cId` IN ...

  5. HDU 1046(最短路径 **)

    题意是要在一个矩形点阵中求能从一点出发遍历所有点再回到起始点的最短路径长度. 不需要用到搜索什么的,可以走一个“梳子型”即可完成最短路径,而情况可以被分成如下两种: 一.矩形的长或宽中有偶数,则可以走 ...

  6. ajax传递对象数组

    1.Json.stringify()是将json数据格式转换成String类型字符串的方法. 后台可以使用String类型接受,接收完可以使用json转换java集合的方法. List<实体类& ...

  7. 059、安装配置flannel(2019-03-28 周四)

    参考https://www.cnblogs.com/CloudMan6/p/7424858.html   build flannel   flannel 没哟现成的执行文件可用,必须自己build,最 ...

  8. Spring Boot 2程序不能加载 com.mysql.jdbc.Driver 问题

    用Spring Boot Starter 向导生成了一个很简单SpringBoot程序, 用到了 MySQL, 总是下面不能加载 Mysql driver class 错误. Cannot load ...

  9. nexys4ddr数码管动态扫描Verilog例程

    题目:实现数码管动态扫描功能,将十六个开关的值以十六进制的方式在4个数码管上同时显示出来. `timescale 1ns / 1ps module top( clk, sw, seg, an ); / ...

  10. DNN网络(三)python下用Tensorflow实现DNN网络以及Adagrad优化器

    摘自: https://www.kaggle.com/zoupet/neural-network-model-for-house-prices-tensorflow 一.实现功能简介: 本文摘自Kag ...