luogu P4314 CPU监控
这是个远古巨坑阿qwq
没有历史最大值还是能比较好做的.可能会有一个想法,就是直接维护线段树每个结点出现过的历史最大值,每次最大值变化就更新.但是有个问题:可能一个点能影响历史最大值的标记还没被及时下放,就被父亲标记覆盖了,这样就可能得到错误答案
考虑新定义标记\((a,b)\),表示对一个结点先加\(a\)然后和\(b\)求max.这种定义下,区间加就是\((x,-\infty)\),赋值就是\((-\infty,x)\).然后如果两个标记合并,假设是\((a,b)\)并上\((x,y)\),那么应该是\((a+x,max(b+x,y))\).手玩发现这样是对的
但是还是没解决历史最大值的问题.现在多开一种标记,表示影响历史最大值的标记.这一种标记\((a,b)\)并上\((x,y)\)应该是\((max(a,x),max(b,y))\),原因是可以看成是两个分段函数取max
然后就没然后了,线段树怎么搞就怎么搞
#include<bits/stdc++.h>
#define LL long long
#define ldb long double
#define il inline
#define re register
using namespace std;
const int N=1e5+10,inf=999999999;
il int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct TAG
{
int a,b;
TAG(){a=0,b=-inf;}
TAG(int na,int nb){a=na,b=nb;}
il void clr(){a=0,b=-inf;}
TAG operator + (const TAG &bb) const {return TAG(max(-inf,a+bb.a),max(b+bb.a,bb.b));} //小心boom int
TAG operator & (const TAG &bb) const {return TAG(max(a,bb.a),max(b,bb.b));}
}nt[N<<2],ht[N<<2];
int ns[N<<2],hs[N<<2];
il void psup(int o){hs[o]=max(hs[o<<1],hs[o<<1|1]),ns[o]=max(ns[o<<1],ns[o<<1|1]);}
il void ad(int o,TAG x,TAG y)
{
ht[o]=ht[o]&(nt[o]+y);
nt[o]=nt[o]+x;
hs[o]=max(hs[o],max(ns[o]+y.a,y.b));
ns[o]=max(ns[o]+x.a,x.b);
}
il void psdn(int o)
{
ad(o<<1,nt[o],ht[o]),ad(o<<1|1,nt[o],ht[o]);
nt[o].clr(),ht[o].clr();
}
#define mid ((l+r)>>1)
void modif(int o,int l,int r,int ll,int rr,TAG x)
{
if(ll<=l&&r<=rr) {ad(o,x,x);return;}
psdn(o);
if(ll<=mid) modif(o<<1,l,mid,ll,rr,x);
if(rr>mid) modif(o<<1|1,mid+1,r,ll,rr,x);
psup(o);
}
int quer(int o,int l,int r,int ll,int rr,bool op)
{
if(ll<=l&&r<=rr) return op?hs[o]:ns[o];
psdn(o);
int an=-inf;
if(ll<=mid) an=max(an,quer(o<<1,l,mid,ll,rr,op));
if(rr>mid) an=max(an,quer(o<<1|1,mid+1,r,ll,rr,op));
psup(o);
return an;
}
void bui(int o,int l,int r)
{
if(l==r){ns[o]=hs[o]=rd();return;}
bui(o<<1,l,mid),bui(o<<1|1,mid+1,r);
psup(o);
}
int n,q;
int main()
{
n=rd();
bui(1,1,n);
q=rd();
char cc[2];
while(q--)
{
scanf("%s",cc);
if(cc[0]=='Q')
{
int l=rd(),r=rd();
printf("%d\n",quer(1,1,n,l,r,0));
}
else if(cc[0]=='A')
{
int l=rd(),r=rd();
printf("%d\n",quer(1,1,n,l,r,1));
}
else if(cc[0]=='P')
{
int l=rd(),r=rd(),x=rd();
modif(1,1,n,l,r,TAG(x,-inf));
}
else
{
int l=rd(),r=rd(),x=rd();
modif(1,1,n,l,r,TAG(-inf,x));
}
}
return 0;
}
luogu P4314 CPU监控的更多相关文章
- P4314 CPU监控
题面 这是一道堪称"线段树3"的线段树好题,对于\(lazy\)标记的操作可以说是非常巧妙 我们用结构体来记录\(lazy\)标记,结构体中定义\(a,b\)两个元素,\(a\)表 ...
- bzoj3064/洛谷P4314 CPU监控【线段树】
好,长草博客被催更了[?] 我感觉这题完全可以当作线段树3 线段树2考加法和乘法标记的下放顺序,这道题更丧心病狂[?] 很多人可能跟我一样,刚看到这道题秒出思路:打一个当前最大值一个历史最大值不就完事 ...
- C#实现对远程服务器的内存和CPU监控
C#实现对远程服务器的内存和CPU监控小记 1. 主要使用到的组件有System.Management.dll 2. 主要类为 :ManagementScope 连接远程服务器示例代码: priv ...
- Linux CPU监控指标
Linux CPU监控指标 Linux提供了非常丰富的命令可以进行CPU相关数据进行监控,例如:top.vmstat等命令.top是一个动态显示过程,即可以通过用户按键来不断刷新当前状态.如果在前台执 ...
- [补档][Tyvj 1518]CPU监控
[Tyvj 1518]CPU监控 题目 Bob需要一个程序来监视CPU使用率.这是一个很繁琐的过程,为了让问题更加简单,Bob会慢慢列出今天会在用计算机时做什么事. Bob会干很多事,除了跑暴力程序看 ...
- CPU监控 解题报告
CPU监控 这种题就需要小黄鸭调试法,不行就重构,动态gdb可能会死人,一堆tag的... 维护历史最值的一个核心是历史最值tag,它的意义是从上一次这个点下放tag之后到当前时刻的这个点的tag达到 ...
- 【BZOJ3064】CPU监控(线段树)
[BZOJ3064]CPU监控(线段树) 题面 BZOJ 洛谷 题解 神仙\(zsy\)出在了\(noip\)模拟的题目.(然而\(zsy\)出的还是这题的升级版) 首先明确一点,这题是一个吉司机线段 ...
- BZOJ 3064 CPU监控
题目链接:CPU监控 学习一番线段树的历史标记- 这道题就是区间加法,区间赋值,要询问区间最大值 和 区间历史最大值的最大值. 然后这种题就是在现有标记的基础上多弄一套标记,维护这个点出现过的最大的标 ...
- 安卓app测试之cpu监控
安卓app测试之cpu监控,如何获取监控的cpu数据呢? 一.通过Dumpsys 来取值 1.adb shell dumpsys cpuinfo 二.top 1.top -d 1|grep packa ...
随机推荐
- Vim auto-pairs设置选项
let g:AutoPairs = {'(':')', '[':']', '{':'}',"'":"'",'"':'"'} 设置要自动配对的 ...
- DP题组
按照顺序来. Median Sum 大意: 给你一个集合,求其所有非空子集的权值的中位数. 某集合的权值即为其元素之和. 1 <= n <= 2000 解: 集合配对,每个集合都配对它的补 ...
- 插入排序Java版
package dataStructureAlgorithmReview.day01; import java.util.Arrays; /** * 插入排序 * @author shundong * ...
- bzoj1009 KMP+矩阵dp
https://www.lydsy.com/JudgeOnline/problem.php?id=1009 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(<=Xi<=), ...
- 全局拦截各种http请求
http请求无非就是ajax.src.href.表单 function hookAJAX() { XMLHttpRequest.prototype.nativeOpen = XMLHttpReques ...
- Django之组件--中间件
中间件 中间件是介于request与response处理之间的一道处理过程,相对比较轻量级,并且在全局上改变django的输入与输出.因为改变的是全局,所以需要谨慎实用,用不好会影响到性能 自定义中间 ...
- linux unknown host 问题【转】
如果某台Linux(CentOS)服务器ping域名, 如下提示: # ping www.sina.comping: unknown host www.sina.com 确认网络没问题的情况下, 可以 ...
- jenkins检查代码,如没更新停止构建步骤
需求分析 在jenkins中没有找到构建前插件,每次构建时间很长,希望可以实现判断代码是否更新,如果没更细则停止构建步骤. 实现步骤 在构建时执行shell命令,而jenkins提供的的环境变量可以实 ...
- MySQL中innodb_flush_log_at_trx_commit的设置
innodb_flush_log_at_trx_commit=0,在提交事务时,InnoDB不会立即触发将缓存日志写到磁盘文件的操作,而是每秒触发一次缓存日志回写磁盘操作,并调用操作系统fsync刷新 ...
- 数据库操作中如何批量执行多个sql文件?
数据库操作中如何批量执行多个sql文件? 1.应用场景:在历史数据导入过程中,会发现有很多个表形成的.sql文件,要是一个一个文件去手动执行,实在是费时间,所以采取以下方法. 2.将文件放在一定位置, ...