tensorflow 学习1——tensorflow 做线性回归
. 首先 Numpy: Numpy是Python的科学计算库,提供矩阵运算. 想想list已经提供了矩阵的形式,为啥要用Numpy,因为numpy提供了更多的函数。
使用numpy,首先要导入numpy: import numpy as np
使用numpy创建数组以list 或tuple作为参数: np.array([,,,]) np.array((1.2,,,))
使用numpy可以指定数据类型: numpy.int32, numpy.int16, numpy.float64
np.array((,,,),dtype=np.int32) 使用numpy.arange方法: np.arange() [ ]
np.arange().reshape(,) [[ ][ ]]
使用numpy.linspace方法:np.linspace(,,) 在1到3之间产生9个数[. 1.25. 1.5. 1.75. . 2.25. 2.5. 2.75. .] 还可以使用 numpy.zeros, numpy.ones, numpy.eye 等方法
查询属性: .ndim 维数, .shape 大小, dtype 元素类型、、、
操作: sum, a.sum(), a.sum(axis=) 计算每一列的和,
min, a.min(), a.max(), np.sin(a), np.floor(a), np.exp(a)
合并: np.vstack((a,b)) 竖拼
np.hstack((a,b)) 横拼 数组索引
索引数组中的一个值: a[,]
索引数组中的一行: a[,:]
索引数组中的一个范围:a[,:] scipy: 包括统计,优化,整合,线性代数。。。
scikit-learn: 机器学习 matplotlib: 绘图系统
import tensorflow as tf
import numpy
import matplotlib.pyplot as plt
rng = numpy.random # Parameters
learning_rate = 0.01
training_epochs = 2000
display_step = 50 # Training Data
train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
n_samples = train_X.shape[0] # tf Graph Input
X = tf.placeholder("float")
Y = tf.placeholder("float") # Create Model # Set model weights
W = tf.Variable(rng.randn(), name="weight")
b = tf.Variable(rng.randn(), name="bias") # Construct a linear model
activation = tf.add(tf.mul(X, W), b) # Minimize the squared errors
cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2 loss
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) #Gradient descent # Initializing the variables
init = tf.initialize_all_variables() # Launch the graph
with tf.Session() as sess:
sess.run(init) # Fit all training data
for epoch in range(training_epochs):
for (x, y) in zip(train_X, train_Y):
sess.run(optimizer, feed_dict={X: x, Y: y}) #Display logs per epoch step
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \
"W=", sess.run(W), "b=", sess.run(b) print "Optimization Finished!"
print "cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), \
"W=", sess.run(W), "b=", sess.run(b) #Graphic display
plt.plot(train_X, train_Y, 'ro', label='Original data')
plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
plt.legend()
plt.show()
输出:
tensorflow 学习1——tensorflow 做线性回归的更多相关文章
- tensorflow学习笔记四----------构造线性回归模型
首先通过构造随机数,模拟数据. import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 随机生成100 ...
- tensorflow学习笔记----tensorflow在windows的安装及TensorBoard中mnist样例
前言: ...
- tensorflow 学习教程
tensorflow 学习手册 tensorflow 学习手册1:https://cloud.tencent.com/developer/section/1475687 tensorflow 学习手册 ...
- Tensorflow学习笔记01
Tensorflow官方网站:http://tensorflow.org/ 极客学院Tensorflow中文版:http://wiki.jikexueyuan.com/project/tensorfl ...
- TensorFlow学习——入门篇
本文主要通过一个简单的 Demo 介绍 TensorFlow 初级 API 的使用方法,因为自己也是初学者,因此本文的目的主要是引导刚接触 TensorFlow 或者 机器学习的同学,能够从第一步开始 ...
- Tensorflow学习笔记3:TensorBoard可视化学习
TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, Tenso ...
- 【深度解析】Google第二代深度学习引擎TensorFlow开源
作者:王嘉俊 王婉婷 TensorFlow 是 Google 第二代深度学习系统,今天宣布完全开源.TensorFlow 是一种编写机器学习算法的界面,也可以编译执行机器学习算法的代码.使用 Tens ...
- 深度学习之TensorFlow构建神经网络层
深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可 ...
- 用tensorflow学习贝叶斯个性化排序(BPR)
在贝叶斯个性化排序(BPR)算法小结中,我们对贝叶斯个性化排序(Bayesian Personalized Ranking, 以下简称BPR)的原理做了讨论,本文我们将从实践的角度来使用BPR做一个简 ...
随机推荐
- CentOS下Denyhosts的安装和使用
安装 默认yum就可以进行安装 yum install denyhosts* -y 配置 配置文件路径: /etc/denyhosts.conf ; YUM安装时其实已经配置好了大部分,我们自己稍作改 ...
- 2019 校内赛 RPG的天赋分支(贪心)
Problem Description 很多游戏都有天赋树的概念,天赋树的不同分支具有不同的属性加成,那么合理选择分支就非常重要了.Luke最近沉迷一款RPG游戏,它的天赋树机制如下:角色具有n个可选 ...
- spring activemq 整合
创建maven项目 项目目录结构为 首先配置相关maven依赖 <!-- 版本管理 --> <properties> <springframework>4.1.8. ...
- 回调函数: 一定要在函数名前加上 CALLBACK,否则有可能引起内存崩溃!
今天又遇到一个莫名其妙的内存崩溃问题,问题代码 EnumChildWindows(...): EnumChildWindows(hwnd_panel_text_watermark, (WNDENUMP ...
- VMware Workstation 14 激活码
激活码: 1.FF31K-AHZD1-H8ETZ-8WWEZ-WUUVA 2.CV7T2-6WY5Q-48EWP-ZXY7X-QGUWD
- matlab 下标类型
double int uint time: double = int < uint8 较为神奇. clear clc time=clock; a=zeros(,); : a(i)=; end f ...
- bash 6
1)如果在开发过程中,遇到大段的代码需要临时注释起来,过一会儿又取消注释,怎么办呢? 每一行加个#符号太费力了,可以把这一段要注释的代码用一对花括号括起来,定义成一个函数, 没有地方调用这个函数,这块 ...
- javascript学习笔记二
1.js的string对象 **创建 String对象 *** var str = "abc"; **方法 和 属性(文档) *** 属性 length : 字符串的长度 ***方 ...
- operator new和operator delete
从STL源码剖析中看到了operator new的使用 template<class T> inline void _deallocate(T* buffer) { ::operator ...
- 交叉编译jpeglib遇到的问题
由于要在开发板中加载libjpeg,不能使用gcc编译的库文件给以使用,需要自己配置使用另外的编译器编译该库文件. /usr/bin/ld: .libs/jaricom.o: Relocations ...