已知$a>0$,函数$f(x)=e^x+3ax^2-2e x-a+1$,
(1)若$f(x)$在$[0,1]$上单调递减,求$a$的取值范围.
(2)$|f(x)|\le1$对任意$x\in[0,1]$恒成立,求$a$的取值范围.


解答:(1)略(2)的几何意义:
首先$|f(0)|\le1,|f(1)|\le1$得$1\le a\le \dfrac{e}{2}$
又$f^{''}(x)=e^x+6a>0$,故$f(x)$图像是下凸的.且$\int_0^1f(x)dx=[e^x+ax^3-ex^2+(1-a)x] {|^1}_0=0$
即$y=f(x)$图像在$x$ 轴下方的面积和上方的面积一样.
记$f^{'}(x_0)=e^x_0+6ax_0-2e=0$显然$x_0\in[0,1]$.如图,

易知$|f(x)|_{max}=\max\{|f(0)|,|f(1)|\}$
所以$1\le a\le \dfrac{e}{2}$

附参考答案:

MT【289】含参绝对值的最大值之三的更多相关文章

  1. MT【270】含参绝对值函数最大之二

    已知$f(x)=2ax\cos^2x+(a-1)\cos x-1,a>0$,记$|f(x)|$的最大值为$A$,1)求A.2)证明:$|-2a\sin 2x+(1-a)\sin x|\le 2A ...

  2. Java 解惑:Random 种子的作用、含参与不含参构造函数区别

    Random 通常用来作为随机数生成器,它有两个构造方法: Random random = new Random(); Random random2 = new Random(50); 1.不含参构造 ...

  3. Java Random 含参与不含参构造函数的区别

    ##Random 通常用来作为随机数生成器,它有两个构造方法: Random random = new Random(); Random random2 = new Random(50); 1.不含参 ...

  4. Codeforces Round #320 (Div. 2) [Bayan Thanks-Round] E 三分+连续子序列的和的绝对值的最大值

    E. Weakness and Poorness time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  5. MT【285】含参数函数绝对值的最大值

    (浙江2013高考压轴题)已知$a\in R$,函数$f(x)=x^3-3x^2+3ax-3a+3$(2)当$x\in[0,2]$时,求$|f(x)|$的最大值. 分析:由题意$f^{'}(x)=3x ...

  6. MT【269】含参函数绝对值最大

    设函数$f(x)=ax^2+(2b+1)x-a-2$($a,b\in\mathcal R$,$a\neq 0$). (1) 若$a=-2$,求函数$y=|f(x)|$在$[0,1]$上的最大值$M(b ...

  7. java abs(绝对值) , max(最大值),min(最小值) 方法的应用

    在写程序是,我们常常会计算一个数的绝对值,这时我们可以使用java里的方法来计算 public class Demo1{ public static void main(String [] args) ...

  8. Python学习之高阶函数--嵌套函数、函数装饰器、含参函数装饰器

    玩了一晚上王者,突然觉得该学习,然后大晚上的搞出来这道练习题,凌晨一点写博客(之所以这么晚就赶忙写是因为怕第二天看自己程序都忘了咋写的了),我太难了o(╥﹏╥)o 言归正传,练习题要求:构造类似京东的 ...

  9. 连续子数组的和的绝对值的最大值、最小值(非绝对值的话直接dp动态规划)

    前缀和的思路: sum[i] = num[0]+num[1]+......+num[i-1] sum[j] = num[0]+num[1]+......+num[j-1] 那么:num[i]+num[ ...

随机推荐

  1. vue 渲染函数&jsx

    前端更新状态,更新视图,所以性能问题主要由Dom操作引起的,而js解析编译dom渲染就要快得多,  所把要js和html混写. vue 的动态js操作 html  方法:reader函数: vue  ...

  2. 2017湘潭大学邀请赛E题(贪心)

    链接:https://www.icpc.camp/contests/4mYguiUR8k0GKE Partial Sum Input The input contains zero or more t ...

  3. Mike and strings CodeForces - 798B (简洁写法)

    题目链接 时间复杂度 O(n*n*|s| ) 纯暴力,通过string.substr()函数来构造每一个字符串平移后的字符串. #include <iostream> #include & ...

  4. vue学习笔记总结----思维导图

  5. pdf转eps后存在大片空白的处理

    之前pdf转eps的方式是用acrobat直接转,发现每次转完后,图片都显示在一张A4纸上,插入到论文中时会出现大片空白:但在pdf中是没有这么多空白的,与裁剪没关系. 后来在 http://tex. ...

  6. Django之在Python中调用Django环境

    Django之在Python中调用Django环境 新建一个py文件,在其中写下如下代码: import os if __name__ == '__main__': os.environ.setdef ...

  7. gin框架学习手册

    前言 gin框架是go语言的一个框架,框架的github地址是:https://github.com/gin-gonic/gin 转载本文,请标注原文地址:https://www.cnblogs.co ...

  8. 用stringstream可以用来分割空格、tab、回车换行隔开的字符串:

    #include <iostream> #include <sstream> #include <vector> using namespace std; int ...

  9. STL中vector、set、list和map

  10. pojo类自动生成序列化ID

    自动生成序列化ID