题目大意

  \(t\)组询问, 每组询问给定\(n\),求\(\sum_{k=1}^n[n,k]\),其中\([a,b]\)表示\(a\)和\(b\)的最小公倍数 .

  \(t\leq 300000,n\leq 1000000\)

题解

\[\begin{align}
\sum_{k=1}^n[k,n]&=n\sum_{k=1}^n\frac{k}{(k,n)}\\
&=n\sum_{p|n}\frac{1}{p}\sum_{k=1}^nk[(k,n)=p]\\
&=n\sum_{p|n}\sum_{k=1}^{\lfloor\frac{n}{p}\rfloor}k[(k,\frac{n}{p})=1]\\
&=n\sum_{p|n}\frac{\frac{n}{p}\phi(\frac{n}{p})+[\frac{n}{p}=1]}{2}\\
&=n\sum_{p|n}\frac{p\phi(p)+[p=1]}{2}
\end{align}
\]

  用线性筛或者其他方法处理出\(\phi\)函数,调和级数的复杂度预处理,每次查表。或者枚举因子。

  时间复杂度:\(O(n\log n)\)或\(O(n+t\sqrt{n})\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<map>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
int miu[1000010];
int phi[1000010];
int p[1000010];
int b[1000010];
ll e[1000010];
ll f[1000010];
int cnt;
int maxn=1000000;
map<int,ll> d;
void init()
{
memset(b,0,sizeof b);
int i,j;
cnt=0;
for(i=2;i<=maxn;i++)
{
if(!b[i])
{
p[++cnt]=i;
miu[i]=-1;
phi[i]=i-1;
}
for(j=1;j<=cnt&&i*p[j]<=maxn;j++)
{
b[i*p[j]]=1;
if(i%p[j]==0)
{
miu[i*p[j]]=0;
phi[i*p[j]]=phi[i]*p[j];
break;
}
miu[i*p[j]]=-miu[i];
phi[i*p[j]]=phi[i]*phi[p[j]];
}
}
e[1]=1;
for(i=2;i<=maxn;i++)
e[i]=(ll(i)*phi[i])/2;
for(i=1;i<=maxn;i++)
for(j=i;j<=maxn;j+=i)
f[j]+=e[i];
}
void solve()
{
int n;
scanf("%d",&n);
printf("%lld\n",f[n]*n);
}
int main()
{
// freopen("a.in","r",stdin);
// freopen("a.out","w",stdout);
init();
int t;
scanf("%d",&t);
while(t--)
solve();
return 0;
}

【XSY2470】lcm 数学的更多相关文章

  1. hdu 4497 GCD and LCM 数学

    GCD and LCM Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4 ...

  2. Codeforces Round #613 (Div. 2) C. Fadi and LCM (数学)

    题意:给你一个正整数\(x\),找两个正整数\(a\),\(b\),使得\(lcm(a,b)=x\),并且\(max(a,b)\)最小. 题解:我们知道,\(lcm(a,b)=a*b/gcd(a,b) ...

  3. Codeforces #6241 div2 C. Orac and LCM (数学)

    题意:给你一个数列,求所有子序列对的\(lcm\),然后求这些所有\(lcm\)的\(gcd\). 题解:我们对所有数分解质因数,这里我们首先要知道一个定理: ​ 对于\(n\)个数,假如某个质数\( ...

  4. 一位学长的ACM总结(感触颇深)

    发信人: fennec (fennec), 信区: Algorithm 标 题: acm 总结 by fennec 发信站: 吉林大学牡丹园站 (Wed Dec 8 16:27:55 2004) AC ...

  5. acdream.LCM Challenge(数学推导)

     LCM Challenge Time Limit:1000MS     Memory Limit:64000KB     64bit IO Format:%lld & %llu Submit ...

  6. UVA 10892 LCM Cardinality 数学

    A pair of numbers has a unique LCM but a single number can be the LCM of more than one possiblepairs ...

  7. HDU 5584 LCM Walk 数学

    LCM Walk Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5584 ...

  8. Codeforces Round #328 (Div. 2) C. The Big Race 数学.lcm

    C. The Big Race Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/592/probl ...

  9. hdu 5584 LCM Walk(数学推导公式,规律)

    Problem Description A frog has just learned some number theory, and can't wait to show his ability t ...

随机推荐

  1. Entity Framework Core系列之什么是Entity Framework Core

    前言 Entity Framework Core (EF Core)是微软推荐的基于.NET Core framework的应用程序数据访问技术.它是轻量级,可扩展并且支持跨平台开发.EF Core是 ...

  2. 如何让.net程序支持TLS1.2

    1.将.Net FrameWork设置成4.6以上版本 2.在需要的类中引入命名空间 using System.Net; 3.在程序调用接口(如支付)的地方,加一段代码即可 System.Net.Se ...

  3. matplotlib 入门之The Lifecycle of a plot

    文章目录 Note 数据 准备开始 操控风格 我错了!!! 定制图像 特别注意!!! figsize=(width, height)!!! 格式化标签 组合多个可视化对象? 保存你的图片 matplo ...

  4. hibernate异常找不到get方法org.hibernate.PropertyNotFoundException: Could not find a getter for did in class com.javakc.hibernate.manytomany.entity.CourseEntity

    属性的get方法没找到,可能是CourseEntity类中对应属性没有get方法,如果有就看CourseEntity.hbm.xml属性名称,应该是写错了不和CourseEntity类中属性名相同,修 ...

  5. 周末时间学习Linux

    大家都是如何度过周末时光的呢?好多人都认为一周的工作后要好好休息下,于是在家疯狂的补觉,刷剧,打游戏,自我觉得很是正常,工作几天了,休息下不是当然嘛.是的,休息下很正常,但是把周末的时光都用到这些东西 ...

  6. fiddler查看IP地址和请求响应时间

    (一)fiddler查看IP地址 1.点击菜单栏rules——customize rules… 2.ctrl+f搜索“static function main” 3.在main函数里加入下面一行代码, ...

  7. vue传参二

    <template> <ul> <li v-for="(value,key,index) in list" :key="index" ...

  8. C#设计模式之4:装饰者模式

    装饰者模式 背景是有一家星巴兹咖啡店,由于客源充足,所以决定重新设计他们的收费系统,以前的收费系统中只定义了一个表示饮料的Beverage的基类,它里面定义了一个Cost的方法用来计算饮料的花费,但是 ...

  9. C#设计模式之3:观察者模式

    C#中已经实现了观察者模式,那就是事件,事件封装了委托,使得委托的封装性更好,在类的内部定义事件,然后在客户端对事件进行注册: public class Subject { public event ...

  10. 网站滚动n个像素后,头部固定

    //固顶 $(window).scroll(function() { var top = $(window).scrollTop(); if(top>=1200){ $(".x_men ...