php实现斐波那契数列
斐波那契数列:
1 1 2 3 5 8 13 21 34 55 …
概念:
前两个值都为1,该数列从第三位开始,每一位都是当前位前两位的和
规律公式为:
Fn = F(n-1) + F(n+1)
F:指当前这个数列
n:指数列的下标
非递归写法:
function fbnq($n){ //传入数列中数字的个数
if($n <= 0){
return 0;
}
$array[1] = $array[2] = 1; //设第一个值和第二个值为1
for($i=3;$i<=$n;$i++){ //从第三个值开始
$array[$i] = $array[$i-1] + $array[$i-2];
//后面的值都是当前值的前一个值加上前两个值的和
}
return $array;
}
递归写法:
function fbnq($n){
if($n <= 0) return 0;
if($n == 1 || $n == 2) return 1;
return fbnq($n - 1) + fbnq($n - 2);
}
php实现斐波那契数列的更多相关文章
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- js中的斐波那契数列法
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...
- 剑指Offer面试题:8.斐波那契数列
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...
- 算法: 斐波那契数列C/C++实现
斐波那契数列: 1,1,2,3,5,8,13,21,34,.... //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- Python递归及斐波那契数列
递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可 ...
- 简单Java算法程序实现!斐波那契数列函数~
java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2 ...
- js 斐波那契数列(兔子问题)
对于JS初学者来说,斐波那契数列一直是个头疼的问题,总是理不清思路. 希望看完这篇文章之后会对你有帮助. 什么是斐波那契数列 : 答: 斐波那契数列,又称黄金分割数列.因数学家列昂纳多·斐波那契(Le ...
- 剑指offer三: 斐波拉契数列
斐波拉契数列是指这样一个数列: F(1)=1; F(2)=1; F(n)=F(n-1)+F(n); public class Solution { public int Fibonacci(int n ...
随机推荐
- Reinforcement Learning: An Introduction读书笔记(4)--动态规划
> 目 录 < Dynamic programming Policy Evaluation (Prediction) Policy Improvement Policy Iterat ...
- Docker部署Nginx并修改配置文件
Docker部署Nginx并修改配置文件 一.拉取nginx镜像 docker pull nginx 二.在宿主机中创建挂载目录 mkdir -p /data/nginx/{conf,conf.d,h ...
- Django-Oscar小记:如何使用高版本Django开发网页的SEO模块
在使用Google搜索Django的SEO插件时,很多插件都没有更新到Python3.x,有的插件更新到了Python的高版本,但是不适用于Django的2.x. Django在升级到版本2.x的时候 ...
- Human Motion Analysis with Wearable Inertial Sensors——阅读1
Human Motion Analysis with Wearable Inertial Sensors——阅读 博主认为对于做室内定位和导航的人这是一篇很很棒的文章,不是他的技术很牛,而是这是一篇医 ...
- saltstack部署配置
共计使用三台虚拟机进行部署实验,系统环境:centos7.3 在master上进行部署配置: 配置主机名 [root@localhost ~]# hostname salt-master [root@ ...
- viewPager+fragment如何刷新缓存fragment
最近在做一个项目,有一个功能是答题翻页.于是需要实现在这一页的时候就缓存下一页. 刚刚开始我是用 setOnPageChangeListener方法监听,滑到这一页的时候才刷新这一页: public ...
- ubuntu12.0.4开启root用户登陆
1.命令:sudo passwd root 为root分配密码,按提示进行设置就好. 2.打开终端,输入以下命令: sudo -s 进入root账户下: cd /etc/lightdm g ...
- Android中Ijkplayer最简单的使用
先添加依赖: compile 'com.dou361.ijkplayer:jjdxm-ijkplayer:1.0.5' MainActivity里面: public class MainActivit ...
- leetcode-66.加一
leetcode-66.加一 题意 给定一个由整数组成的非空数组所表示的非负整数,在该数的基础上加一. 最高位数字存放在数组的首位, 数组中每个元素只存储一个数字. 你可以假设除了整数 0 之外,这个 ...
- ERP服务启动后无法连接数据库的解决方法
请安照步骤一步一步走,一个方法一个方法试. 方法一: 第一步,退出ERP 第二步,卸载sql服务,操作方法如下(win+R—输入cmd—输入sc delete mysql_sl 回车键) 第三步,重启 ...