嘟嘟嘟




先看了一遍lucas,还是只能拿50分(似乎已经满足了)。

正解当然还是看某个大佬的啦。




我们要求的就是

\[f(n, k) = \sum _ {i = 0} ^ {k} C _ {n} ^ {i} \% p
\]

然后根据lucas定理,就开始愉快的推式子了……

\[\begin{align*}
f(n, k)
&= \sum _ {i = 0} ^ {k} C _ {n} ^ {i} \% p \\
&= \sum _ {i = 0} ^ {k} C_ {n / p} ^ {i / p} * C _ {n \% p} ^ {i \% p} \\
&= C_{n / p} ^ {0} \sum _ {i = 0} ^ {p - 1} C _ {n \% p} ^ {i} + C _ {n / p} ^ {1} \sum _ {i = 0} ^ {p - 1} C _ {n \% p} ^ {i} + \ldots + C_{n / p} ^ {k / p - 1} \sum _ {i = 0} ^ {p - 1} C _ {n \% p} ^ {i} + C _ {n / p} ^ {k / p} \sum _ {i = 0} ^ {k \% p} C _ {n \% p} ^ {i}\\
&= \sum _ {i = 0} ^ {p - 1} C _ {n \% p} ^ {i} * (C _ {n / p} ^ {0} + C_{n / p} ^ {1} + \ldots + C_{n / p} ^ {k / p - 1}) + C _ {n / p} ^ {k / p} \sum _ {i = 0} ^ {k \% p} C _ {n \% p} ^ {i} \\
&= f(n \% p, p - 1) * f(n / p, k / p - 1) + C _ {n / p} ^ {k / p} * f(n \% p, k \% p) \\
\end{align*}
\]

然后把\(f(n \% p, k \% p)\)预处理一下,就完事了。(说的真轻松……)

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 2505;
const int p = 2333;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
} ll n, K;
ll C[maxn][maxn], f[maxn][maxn]; In ll inc(ll a, ll b) {return a + b >= p ? a + b - p : a + b;} In ll lucas(ll n, ll m)
{
if(!m || n == m) return 1;
if(n < m) return 0;
return C[n % p][m % p] * lucas(n / p, m / p) % p;
}
In ll F(ll n, ll K)
{
if(K < 0) return 0;
if(!n || !K) return 1;
if(n < p && K < p) return f[n][K];
return inc(f[n % p][p - 1] * F(n / p, K / p - 1) % p, lucas(n / p, K / p) * f[n % p][K % p] % p);
} In void init()
{
for(int i = 0; i < maxn; ++i) C[i][0] = 1;
for(int i = 1; i < maxn; ++i)
for(int j = 1; j <= i; ++j)
C[i][j] = inc(C[i - 1][j - 1], C[i - 1][j]);
for(int i = 0; i < maxn; ++i) f[i][0] = 1;
for(int i = 0; i < maxn; ++i)
for(int j = 1; j < maxn; ++j)
f[i][j] = inc(C[i][j], f[i][j - 1]);
} int main()
{
init();
int T = read();
while(T--)
{
n = read(), K = read();
write(F(n, K)), enter;
}
return 0;
}

[SHOI2015]超能粒子炮·改的更多相关文章

  1. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  2. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  3. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  4. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  5. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  6. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

  7. Lucas(卢卡斯)定理模板&&例题解析([SHOI2015]超能粒子炮·改)

    Lucas定理 先上结论: 当p为素数: \(\binom{ N }{M} \equiv \binom{ N/p }{M/p}*\binom{ N mod p }{M mod p} (mod p)\) ...

  8. 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理

    题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...

  9. bzoj4591 [Shoi2015]超能粒子炮·改

    Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...

  10. loj 2038 / 洛谷 P4345 [SHOI2015] 超能粒子炮・改 题解

    好玩的推式子 题目描述 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒子炮・改相比超能粒子炮,在威力上 ...

随机推荐

  1. Laravel5.5 数据库迁移:创建表与修改表

    数据库迁移是数据库的版本管理,要使用数据库迁移,需要在.env文件中连接好数据库(不多说).laravel本身已经存在user表和password_resets表的迁移了,因此,执行 php arti ...

  2. 申请Office 365一年免费的开发者账号攻略(2018年10月份版本)

    要进行Office 365开发,当然需要有完整的Office 365环境才可以.为了便于广大开发人员快速地启动这项工作,微软官方给所有开发人员提供了免费的一年开发者账号   那么如何申请Office ...

  3. loadrunner 脚本优化-参数化之Parameter List参数取值

    脚本优化-参数化之Parameter List参数取值 by:授客 QQ:1033553122 参数取值选项 Select next row Update value on 以上两个选项是改变参数化取 ...

  4. 初见jQuery EasyUI

    本文通过一个简单的小例子,简述jQuery EasyUI的使用方法,仅供学习分享使用,如有不足之处,还请指正. 什么是jQuery EasyUI ? 引用官网的一句话:jQuery EasyUI fr ...

  5. Android为TV端助力 转载:Java 泛型

    一. 泛型概念的提出(为什么需要泛型)? 首先,我们看下下面这段简短的代码: 1 public class GenericTest { 2 3 public static void main(Stri ...

  6. Kotlin入门(26)数据库ManagedSQLiteOpenHelper

    共享参数毕竟只能存储简单的键值对数据,如果需要存取更复杂的关系型数据,就要用到数据库SQLite了.尽管SQLite只是手机上的轻量级数据库,但它麻雀虽小.五脏俱全,与Oracle一样存在数据库的创建 ...

  7. Java虚拟机(五)Java的四种引用级别

    1.前言 HotSpot采取了可达性分析算法用来判断对象是否被能被GC,无论是引用计算法还是可达性分析算法都是判断对象是否存在引用来判断对象是否存活.如果reference类型的数据中存储的数值代表的 ...

  8. Android性能优化9-ANR完全解析

    1.什么是ANR 在Android上,如果你的应用程序有一段时间响应不够灵敏,系统会向用户显示一个对话框,这个对话框称作应用程序无响应(ANR:Application Not Responding)对 ...

  9. socket通讯,TCP,UDP,HTTP的区别

    socket编程有TCP和UDP, TCP:传送控制协议(Transmission Control Protocol) 传输控制协议TCP是TCP/IP协议栈中的传输层协议,它通过序列确认以及包重发机 ...

  10. float、double、BigDecimal的一些精度问题

    float f = 280.8f;System.out.println(f*100);结果是什么?结果是:28080.0f(我是这么想的)实际结果是:28079.998 既然float处理有问题换do ...