A1126. Eulerian Path
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)
Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 2 numbers N (<= 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).
Output Specification:
For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either "Eulerian", "Semi-Eulerian", or "Non-Eulerian". Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.
Sample Input 1:
7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6
Sample Output 1:
2 4 4 4 4 4 2
Eulerian
Sample Input 2:
6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6
Sample Output 2:
2 4 4 4 3 3
Semi-Eulerian
Sample Input 3:
5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3
Sample Output 3:
3 3 4 3 3
Non-Eulerian
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
int G[][] = {,}, visit[] = {};
int N, M;
void DFS(int vt){
visit[vt] = ;
for(int i = ; i <= N; i++){
if(G[vt][i] != && visit[i] == )
DFS(i);
}
}
int main(){
scanf("%d%d", &N, &M);
for(int i = ; i < M; i++){
int v1, v2;
scanf("%d%d", &v1, &v2);
G[v1][v2] = G[v2][v1] = ;
}
int odds = , even = , cnt = ;
for(int i = ; i <= N; i++){
int sum = ;
for(int j = ; j <= N; j++){
sum += G[i][j];
}
if(i == N)
printf("%d\n", sum);
else printf("%d ", sum);
if(sum % == ){
odds = ;
}else{
even = ;
cnt++;
}
}
DFS();
for(int i = ; i <= N; i++)
if(visit[i] == ){
printf("Non-Eulerian");
return ;
}
if(even == ){
printf("Eulerian");
}else if(cnt == ){
printf("Semi-Eulerian");
}else printf("Non-Eulerian");
cin >> N;
return ; }
总结:
1、容易被忽略的:Semi-Eulerian和 Eulerian都是建立在连通图的基础上。最开始忽略了连通图的条件,结果有一个测试点过不去。应该先判断是否连通,不连通为 Non-Eulerian。
A1126. Eulerian Path的更多相关文章
- PAT A1126 Eulerian Path (25 分)——连通图,入度
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
- PAT甲级——A1126 Eulerian Path【30】
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
- 【刷题-PAT】A1126 Eulerian Path (25 分)
1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...
- PAT_A1126#Eulerian Path
Source: PAT A1126 Eulerian Path (25 分) Description: In graph theory, an Eulerian path is a path in a ...
- 1126 Eulerian Path (25 分)
1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...
- Graph | Eulerian path
In graph theory, a Eulerian trail (or Eulerian path) is a trail in a graph which visits every edge e ...
- PAT1126:Eulerian Path
1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...
- PAT甲级 1126. Eulerian Path (25)
1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...
- PAT 甲级 1126 Eulerian Path
https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...
随机推荐
- Dom4j解析
dom4j-1.6.1.jar, 这个包提供了xml解析相关的方法. 这里做一个记录,微信公众号里需要对HttpServletRequest做解析,实际上也可以用dom4j提供的方法进行解析转换. 这 ...
- TextView不用ScrollViewe也可以滚动的方法
转自:http://www.jb51.net/article/43377.htm android TextView不用ScrollViewe也可以滚动的方法. TextView textview = ...
- python爬虫之MongoDB测试环境安装
一. 下载 从http://www.mongodb.org/downloads地址中下载:mongodb-linux-x86_64-2.4.11.tar 二. 安装 1>设置mongoDB ...
- ERROR org.hibernate.internal.SessionImpl - HHH000346: Error during managed flush [object references an unsaved transient instance - save the transient instance before flushing: cn.itcast.domain.Custom
本片博文整理关于Hibernate中级联策略cascade和它导致的异常: Exception in thread "main" org.hibernate.TransientOb ...
- js的常用文档对象,document
1.document的概念:window的子对象,由于DOM对象模型的默认对象就是window,因此Window对象中的方法和子对象不需要通过Window来引用. - 2.document的组成:属性 ...
- npm 和package.json 文件
你可能还记得使用vue-cli 创建vue项目.当创建项目完成后,我们进入到项目目录,启动cmd命令窗口,输入npm install,它就会安装一堆东西(依赖),然后再输入npm run dev, 我 ...
- 最简单的Spring Security配置示例
代码结构: pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&qu ...
- [51Nod 1584] 加权约数和
Description 在整理以前的试题时,他发现了这样一道题目:"求 \(\sum\sigma(i)\),其中 \(1≤i≤N\),\(σ(i)\) 表示 \(i\) 的约数之和.&quo ...
- 洛谷P3870开关题解
我们先看题面,一看是一个区间操作,再看一下数据范围,就可以很轻松地想到是用一个数据结构来加快区间查询和修改的速度,所以我们很自然的就想到了线段树. 但是这个题还跟普通的线段树不一样,这个题可以说要思考 ...
- SHELL编程综合练习
SHELL编程综合练习1 一. 实验准备(预防抄袭,此步必做) 请将命令提示符设为你的学号:输入PS1=你的学号_,即学号之后跟下划线,例如PS1=110015_, 回车执行 如发现命令提示符和你的学 ...