A1126. Eulerian Path
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)
Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.
Input Specification:
Each input file contains one test case. Each case starts with a line containing 2 numbers N (<= 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).
Output Specification:
For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either "Eulerian", "Semi-Eulerian", or "Non-Eulerian". Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.
Sample Input 1:
7 12
5 7
1 2
1 3
2 3
2 4
3 4
5 2
7 6
6 3
4 5
6 4
5 6
Sample Output 1:
2 4 4 4 4 4 2
Eulerian
Sample Input 2:
6 10
1 2
1 3
2 3
2 4
3 4
5 2
6 3
4 5
6 4
5 6
Sample Output 2:
2 4 4 4 3 3
Semi-Eulerian
Sample Input 3:
5 8
1 2
2 5
5 4
4 1
1 3
3 2
3 4
5 3
Sample Output 3:
3 3 4 3 3
Non-Eulerian
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
int G[][] = {,}, visit[] = {};
int N, M;
void DFS(int vt){
visit[vt] = ;
for(int i = ; i <= N; i++){
if(G[vt][i] != && visit[i] == )
DFS(i);
}
}
int main(){
scanf("%d%d", &N, &M);
for(int i = ; i < M; i++){
int v1, v2;
scanf("%d%d", &v1, &v2);
G[v1][v2] = G[v2][v1] = ;
}
int odds = , even = , cnt = ;
for(int i = ; i <= N; i++){
int sum = ;
for(int j = ; j <= N; j++){
sum += G[i][j];
}
if(i == N)
printf("%d\n", sum);
else printf("%d ", sum);
if(sum % == ){
odds = ;
}else{
even = ;
cnt++;
}
}
DFS();
for(int i = ; i <= N; i++)
if(visit[i] == ){
printf("Non-Eulerian");
return ;
}
if(even == ){
printf("Eulerian");
}else if(cnt == ){
printf("Semi-Eulerian");
}else printf("Non-Eulerian");
cin >> N;
return ; }
总结:
1、容易被忽略的:Semi-Eulerian和 Eulerian都是建立在连通图的基础上。最开始忽略了连通图的条件,结果有一个测试点过不去。应该先判断是否连通,不连通为 Non-Eulerian。
A1126. Eulerian Path的更多相关文章
- PAT A1126 Eulerian Path (25 分)——连通图,入度
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
- PAT甲级——A1126 Eulerian Path【30】
In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...
- 【刷题-PAT】A1126 Eulerian Path (25 分)
1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...
- PAT_A1126#Eulerian Path
Source: PAT A1126 Eulerian Path (25 分) Description: In graph theory, an Eulerian path is a path in a ...
- 1126 Eulerian Path (25 分)
1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...
- Graph | Eulerian path
In graph theory, a Eulerian trail (or Eulerian path) is a trail in a graph which visits every edge e ...
- PAT1126:Eulerian Path
1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...
- PAT甲级 1126. Eulerian Path (25)
1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...
- PAT 甲级 1126 Eulerian Path
https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...
随机推荐
- Quartz框架学习(1)—核心层次结构
Quartz框架学习 Quartz(任务调度)框架的核心组件: job:任务.即任务调度行为中所要调度的对象. trigger:触发器.是什么促使了一个任务的调度?当然是时间.这也算事件驱动类型程序. ...
- RabbitMQ基本操作
更加详细的 链接https://www.cnblogs.com/dwlsxj/p/RabbitMQ.html RabbitMQ基础知识 一.背景 RabbitMQ是一个由erlang开发的AMQP(A ...
- python 列表、元组、字典
一.列表 [ ] 如下的列子都可以成为列表,c=[1,2,3,4,5,6],d=["abc", "张三",“李四”],e=[1,2,3,"abc&qu ...
- mvn clean deploy
如果是 mthrift的话,需要部署,就用 mvn clean deploy; 先进入 cd qcs.appeal.client ,然后执行:mvn clean deploy;
- delphi中如何实现DBGrid中的两列数据想减并存入另一列
可参考下面的例子: 数据自动计算的实现:“金额”是由“单价”和“工程量”相乘直接得来的,勿需人工输入. 这可在“数据源构件”的onupdatedata例程添加如下代码实现: procedure T ...
- epoch、 iteration和batchsize区别
转自: https://blog.csdn.net/qq_27923041/article/details/74927398 深度学习中经常看到epoch. iteration和batchsize,下 ...
- JS--bom对象:borswer object model浏览器对象模型
bom对象:borswer object model浏览器对象模型 navigator获取客户机的信息(浏览器的信息) navigator.appName;获得浏览器的名称 window:窗口对象 a ...
- Lodop打印控件 打印透明图问题
Lodop通过增设transcolor属性实现了“先字后章”效果,这个属性可以把某种颜色转成类似透明的效果.例如:把图章的底色白色变成透明:transcolor="#FFFFFF" ...
- LDOOP设置关联后超出新起一页LinkNewPage
关联打印的时候,top,left关联位置是相对于被关联打印项的偏移值,具体可查看本博客相关介绍博文:LODOP打印控件关联输出各内容 正常情况下,超文本超过打印项高度,或纸张高度会自动分页,如果超文本 ...
- Spring validator常用注解
规则: 原版在这里 https://www.cnblogs.com/wjh123/p/8745473.html @AssertFalse Boolean,boolean 验证注解的元素值是false ...