面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖)

提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tpId=13&tqId=11160

参与人数:7267  时间限制:1秒  空间限制:32768K

题目描述

大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项 Fibonacci(int n)。

分析:

用递归会TLE,因为有不少地方进行了重复计算,改为循环即可解决(迭代法)...

另外为了避免输入非法值(比如负数),输入改为了unsigned int

\(fib(n)=\begin{cases} 1 &  n=0 \\

 1 & n=1 \\ 

 fib(n)+f(n-1) & n > 1  \ and \  n \in N \end{cases}\)

AC代码:

class Solution {
public:
int Fibonacci(unsigned int n) { int arr[2]={0,1};
if(n<2) return arr[n]; long long fib_2preN=0; // fib(0)
long long fib_1preN=1; // fib(1)
long long fib_N=0; for(int idx=2; idx <= n; idx++)
{
fib_N=fib_2preN+fib_1preN;
fib_2preN=fib_1preN;
fib_1preN=fib_N;
}
return fib_N;
}
};

剑指offer 面试题9 变形1(跳台阶)

提交网址: http://www.nowcoder.com/practice/8c82a5b80378478f9484d87d1c5f12a4?tpId=13&tqId=11161

题目描述:

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

输入:

输入可能包含多个测试样例,对于每个测试案例,

输入包括一个整数n(1<=n<=70)。

输出:

对应每个测试案例,

输出该青蛙跳上一个n级的台阶总共有多少种跳法。

样例输入:

5

样例输出:

8

分析:

青蛙跳上n级台阶的跳法情况( s(n) ),第1次跳的时候有两种选择: 

(1) 如果第1次跳时选择跳过1级台阶,那么还剩下n - 1级台阶,而跳上n – 1级台阶的跳法数目是s(n - 1); 

(2) 如果第1次跳时选择跳过2级台阶,那么剩下n - 2级台阶,而跳上n – 2级台阶的跳法数目是s(n - 2)。

\(s(n)=\begin{cases} 1 &  n=1 \\

 1 & n=2 \\ 

 s(n)+s(n-1) & n > 2  \ and \  n \in N \end{cases}\)

如果使用递归,会TLE超时,此处还是需要用迭代法...

AC代码:

class Solution {
public:
int jumpFloor(int n) {
if(n<0) return 0; if(n==1) return 1;
if(n==2) return 2; long long s_2preN=1; // s(1)
long long s_1preN=2; // s(2)
long long s_N=1; for(int idx=3; idx <= n; idx++)
{
s_N=s_2preN+s_1preN;
s_2preN=s_1preN;
s_1preN=s_N;
}
return s_N;
}
};

leetcode 70. Climbing Stairs

提交网址: https://leetcode.com/problems/climbing-stairs/

这有个奇怪的要求,n<0时,返回1

class Solution {
public:
int climbStairs(int n) {
if(n<0) return 1; if(n==1) return 1;
if(n==2) return 2; long long s_2preN=1; // s(1)
long long s_1preN=2; // s(2)
long long s_N=1; for(int idx=3; idx <= n; idx++)
{
s_N=s_2preN+s_1preN;
s_2preN=s_1preN;
s_1preN=s_N;
}
return s_N;
}
};

剑指offer 面试题9 变形2(变态跳台阶)

提交网址: http://www.nowcoder.com/practice/22243d016f6b47f2a6928b4313c85387?tpId=13&tqId=11162

题目描述:

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

输入:

输入可能包含多个测试样例,对于每个测试案例,

输入包括一个整数n(1<=n<=50)。

输出:

对应每个测试案例,

输出该青蛙跳上一个n级的台阶总共有多少种跳法。

样例输入:

6

样例输出:

32

分析:

青蛙跳上n级台阶的跳法情况(s(n)),第1次跳的时候: 

(1) 如果第1次跳时选择跳过1级台阶,那么还剩下n-1级台阶,而跳上n – 1级台阶的跳法数目是s(n-1); 

(2) 如果第1次跳时选择跳过2级台阶,那么剩下n-2级台阶,而跳上n – 2级台阶的跳法数目是s(n-2)。 

(3) 如果第1次跳时选择跳过3级台阶,剩下n-3台阶, 而跳上n –3级台阶的跳法数目是s(n-3)。 

……

故总数为s(n) = s(n-1) + s(n-2) + … + s(2) + s(1) + s(0) . 

s(n-1)= s(n-2) + … + s(2) + s(1) + s(0) 

两式相减得: 

s(n) =2*s(n-1) 

s(1)=1 

对于s(0),由s(2)=s(1)+s(0)=2可得s(0)=1.

\(s(n)=\begin{cases} 1 &  n=0 \\

 1 & n=1 \\ 

 2\cdot s(n) & n > 1  \ and \  n \in N \end{cases}\)

依旧需要用迭代法...

AC代码:

class Solution {
public:
int jumpFloorII(int n) {
if(n<0) return 0; if(n==0 || n==1) return 1; long long s_N=1; // s(1) for(int idx=2; idx <= n; idx++)
{
s_N=2*s_N;
}
return s_N;
}
};

剑指offer 面试题9(变形3) 矩形覆盖

提交网址:  http://www.nowcoder.com/practice/72a5a919508a4251859fb2cfb987a0e6?tpId=13&tqId=11163

题目描述:

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

输入:

输入可能包含多个测试样例,对于每个测试案例,

输入包括一个整数n(0<=n<=70)。

输出:

对应每个测试案例,

输出用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有的方法数。

样例输入:

4

样例输出:

5

分析: 

2*n的覆盖方法情况总数为 f(n),假设2*n的大矩形高度为2(躺着放),当第一个2*1小矩形放在最左边的角落时: 

(1) 如果第一个2*1小矩形选择竖着放,那么还剩下2*n-1的区域,而2*n-1区域的覆盖数目是f(n-1); 

(2) 如果第一个2*1小矩形选择横着放,那么上面必须再放一个2*1小矩形,同时还剩下2*n - 2区域,而2*n-2区域的覆盖数目是f(n-2);

所以总数为f(n) = f(n-1) + f(n-2) . 

f(1)=1 

对于f(0),由f(2)=f(1)+f(0)=2可知 f(0)=1.

\(f(n)=\begin{cases} 1 &  n=0 \\

 1 & n=1 \\ 

 f(n)+f(n-1) & n > 1  \ and \  n \in N \end{cases}\)

AC代码:

class Solution {
public:
int rectCover(int number) {
if(number<0) return 0; // if(number<0 || number%2) return 0; 不需要考虑奇偶
if(number==0 || number==1) return 1; long long f_2preN=1; // f(0)
long long f_1preN=1; // f(1)
long long f_N=1; for(int idx=2; idx <= number; idx++)
{
f_N=f_2preN+f_1preN;
f_2preN=f_1preN;
f_1preN=f_N;
}
return f_N;
}
};

C#版 - 剑指offer 面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖) 题解的更多相关文章

  1. 剑指Offer - 九度1387 - 斐波那契数列

    剑指Offer - 九度1387 - 斐波那契数列2013-11-24 03:08 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.斐波那契数列的定义如下: ...

  2. 【剑指offer】9、斐波拉契数列

    面试题9.斐波拉契数列 题目: 输入整数n,求斐波拉契数列第n个数. 思路: 一.递归式算法: 利用f(n) = f(n-1) + f(n-2)的特性来进行递归,代码如下: 代码: long long ...

  3. 剑指offer【07】- 斐波那契数列(java)

    题目:斐波那契数列 考点:递归和循环 题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0),n<=39. 法一:递归法,不过递归比较慢, ...

  4. 剑指offer(7)斐波那契数列

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 题目分析 我们都知道斐波那契可以用递归,但是递归重复计算的部分太多了(虽然可以通过),但是这 ...

  5. 【剑指Offer】7、斐波那契数列

      题目描述:   大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0).假设n<=39.   解题思路:   斐波那契数列:0,1,1,2,3, ...

  6. 【剑指offer】7:斐波那契数列

    题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0,第1项是1).假设 n≤39 解题思路: 斐波拉契数列:1,1,2,3,5,8--,总结 ...

  7. C++版 - 剑指Offer 面试题39:二叉树的深度(高度)(二叉树深度优先遍历dfs的应用) 题解

    剑指Offer 面试题39:二叉树的深度(高度) 题目:输入一棵二叉树的根结点,求该树的深度.从根结点到叶结点依次经过的结点(含根.叶结点)形成树的一条路径,最长路径的长度为树的深度.例如:输入二叉树 ...

  8. 【Java】 剑指offer(9) 斐波那契数列及青蛙跳台阶问题

     本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项 ...

  9. (1)剑指Offer之斐波那契数列问题和跳台阶问题

    一 斐波那契数列 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 问题分析: 可以肯定的是这一题通过递归的方式是肯定能做出来,但是这样会有 ...

随机推荐

  1. Web性能和负载测试工具补充

    压力测试文档:https://yq.aliyun.com/articles/377543https://www.cnblogs.com/ahjxxy/archive/2012/09/17/268899 ...

  2. 虚拟DOM

    传统的 DOM 操作是直接在 DOM 上操作,当需要修改一系列元素中的值时,就会直接对 DOM 进行操作.如果需要操作的DOM元素过多,则成本太高,而采用 Virtual DOM 则会对需要修改的 D ...

  3. TJOI2010中位数

    中位数 上面是题目链接. 这一题比较水. 思路非常显然. 用mid查询时,只要返回中间值就行了. 主要就是add操作. 我们肯定不能插在末尾,然后用系统快排,这样只有30分. 那么正确的操作应该是二分 ...

  4. JB的IDE可视化MongoDB、MySQL数据库信息

    一.问题: 在使用JB的IDE的时候(pycharm.IDEA等)可视化mysql和mongodb的数据库信息,效果如下 MySQL: MongoDB:  可视化数据表关系: 二.方法: 1.MySQ ...

  5. 欧拉函数-gcd-快速幂(牛客寒假算法基础集训营1-D-小a与黄金街道)

    题目描述: 链接:https://ac.nowcoder.com/acm/contest/317/D来源:牛客网小a和小b来到了一条布满了黄金的街道上.它们想要带几块黄金回去,然而这里的城管担心他们拿 ...

  6. 转发:已知rsa的模数和指数 生成pem公钥文件

    1.安装cryptographysudo pip3 install cryptography 2.代码 #coding:utf8# pupulate-pub-key-v3.py#from crypto ...

  7. Ubuntu之sudo权限管理/etc/sudoers文件

    网易云音乐翻车记 系统安装的Ubuntu18.04桌面版,安装网易云客户端后,还没来得及夸奖,发现点击图标打不开后网上找到教程:Ubuntu网易云音乐无法打开 感觉挺靠谱的,照着最下边的教材修改了一波 ...

  8. gulp使用入门

    介绍:Gulp 是基于node.js的一个前端自动化构建工具,可以使用它构建自动化工作流程(前端集成开发环境):不仅能对网站资源进行优化,而且在开发过程中很多重复的任务能够使用正确的工具自动完成,大大 ...

  9. Android逆向破解表单注册程序

    Android逆向破解表单注册程序 Android开发 ADT: android studio(as) 程序界面如下,注册码为6位随机数字,注册成功时弹出通知注册成功,注册失败时弹出通知注册失败. 布 ...

  10. 回头来学习wpf的FlowDocument

    学习了一段时间的electron,其实是一个神奇的开发方式,让人神往.但其打印和ocx或是activeX方面还是让我不大放心去使用.毕竟当前首要任务还是window的应用开发. 于是重新学习wpf的F ...