把一个n位数看做n-1次的多项式,每一项的系数是反过来的每一位
最后每一项系数进进位搞一搞就行了
(数组一定要开到2的次数..要不然极端数据会RE)

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=;
const double Pi=acos(-); struct Cpx{
double x,y;
Cpx(double xx=,double yy=){x=xx;y=yy;}
}X[maxn],Y[maxn];
Cpx operator *(Cpx a,Cpx b){return Cpx(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
Cpx operator +(Cpx a,Cpx b){return Cpx(a.x+b.x,a.y+b.y);}
Cpx operator -(Cpx a,Cpx b){return Cpx(a.x-b.x,a.y-b.y);}
int N,M,rev[maxn],ans[maxn]; void rd(Cpx *A){
char c=getchar();
while(c<''||c>'') c=getchar();
int i=N-;
while(c>=''&&c<='') A[i--].x=(int)(c-''),c=getchar();
} void fft(Cpx *A,int opt){
for(int i=;i<N;i++) if(i<rev[i]) swap(A[i],A[rev[i]]);
for(int l=;l<N;l<<=){
Cpx wn=Cpx(cos(Pi/l),opt*sin(Pi/l));int step=l<<;
for(int i=;i<N;i+=step){
Cpx w=Cpx(,);
for(int k=;k<l;k++,w=w*wn){
Cpx a=A[i+k],b=A[i+k+l]*w;
A[i+k]=a+b;A[i+k+l]=a-b;
}
}
}
} int main(){
int i,j,k;
scanf("%d",&N);M=N*-;
rd(X);rd(Y);
for(i=,j=;i<M;i<<=,j++);N=i;
for(i=;i<N;i++) rev[i]=(rev[i>>]>>)|((i&)<<(j-));
fft(X,);fft(Y,);
for(i=;i<N;i++) X[i]=X[i]*Y[i];fft(X,-);
for(i=;i<M;i++)
j=(int)(X[i].x/N+0.5),ans[i+]=(ans[i]+j)/,ans[i]=(ans[i]+j)%;
for(i=M;i>=&&!ans[i];i--);
for(;i>=;i--) printf("%d",ans[i]);
}

luogu1919 A*BProblem升级版 (FFT)的更多相关文章

  1. 洛谷.1919.[模板]A*B Problem升级版(FFT)

    题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...

  2. P1919 【模板】A*B Problem升级版 /// FFT模板

    题目大意: 给定l,输入两个位数为l的数A B 输出两者的乘积 FFT讲解 这个讲解蛮好的 就是讲解里面贴的模板是错误的 struct cpx { double x,y; cpx(double _x= ...

  3. 初探FFT(快速傅里叶变换)

    第一次接触省选的知识点呢!zrf大佬在课堂上讲的非常清楚,但由于本蒟蒻实在太菜了,直接掉线了.今天赶紧恶补一下. 那么这篇博客将分为两块,第一块是FFT的推导和实现,第二块则是FFT在OI上的应用 因 ...

  4. 【Luogu1919】 A*B Problem升级版(FFT)

    题面戳我 题解 把每个数都直接看做一个多项式,每一位就是一项 现在求用FFT求出卷积 然后考虑一下进位就可以啦 #include<iostream> #include<cstdio& ...

  5. Luogu1919 【模板】A*B Problem升级版(FFT)

    简单的\(A*B\) \(Problem\),卡精度卡到想女装 #include <iostream> #include <cstdio> #include <cstri ...

  6. 洛谷P1919 【模板】A*B Problem升级版 题解(FFT的第一次实战)

    洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如 ...

  7. [Luogu 1919]【模板】A*B Problem升级版(FFT快速傅里叶)

    Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...

  8. Luogu P1919 【模板】A*B Problem升级版(FFT快速傅里叶_FFT

    这其实就是一道裸的FFT 核心思想:把两个数拆成两个多项式用FFT相乘,再反序输出 py解法如下: input() print(int(input())*int(input())) 皮一下hihi f ...

  9. 洛谷 P1919 【模板】A*B Problem升级版(FFT快速傅里叶)

    题目来源 吐槽下P3803都是紫题... 真心好写,本想一遍过的...但是 我真是太菜了... #include<bits/stdc++.h> using namespace std; ; ...

随机推荐

  1. swagger 指定字段不显示到文档里

    Swagger UI 隐藏指定接口类或方法 - 宁静致远 - CSDN博客https://blog.csdn.net/lqh4188/article/details/53538201 swagger ...

  2. Oracle条件判断if...elsif

  3. Bootstrap 字体图标(Glyphicons)

    http://www.runoob.com/bootstrap/bootstrap-glyphicons.html 什么是字体图标? 字体图标是在 Web 项目中使用的图标字体.虽然,Glyphico ...

  4. 剑指offer(7)

    今天的几道题目都是关于斐波那契数列的. 题目1: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 传统的方法采用递归函数,这种 ...

  5. RN 实战 & React Native 实战

    RN 实战 & React Native 实战 https://abc.xgqfrms.xyz/react-native-docs/ 0.59 https://github.com/xgqfr ...

  6. final关键字的用法

    final关键字的作用 1.被final修饰的类不能被继承 报错信息:cannot inherit from final 'com.dajia.test.Animal' 2.被final修饰的方法不能 ...

  7. 莫烦scikit-learn学习自修第一天【scikit-learn安装】

    1. 机器学习的分类 (1)有监督学习(包括分类和回归) (2)无监督学习(包括聚类) (3)强化学习 2. 安装 (1)安装python (2)安装numpy >=1.6.1 (3)安装sci ...

  8. Yii的数值比较验证器

    该验证器比对两个特定输入值之间的关系 是否与 operator 属性所指定的相同. compareAttribute:用于与原属性相比对的属性名称. 当该验证器被用于验证某目标属性时, 该属性会默认为 ...

  9. Python自动化运维之pexpect从入门到精通

    1. 应用场景 模拟ssh, telnet远程登录, 模拟ftp文件上传 2. 安装 参考资料: <pexpect实例分析>https://www.ibm.com/developerwor ...

  10. Lodop控件NewPage();测试输出空白页

    LODOP.NewPage();和LODOP.NewPageA();是强制分页语句,两者的区别可查看本博客的相关博文:Lodop强制分页LODOP.NewPage()和LODOP.NewPageA() ...