luogu1919 A*BProblem升级版 (FFT)
把一个n位数看做n-1次的多项式,每一项的系数是反过来的每一位
最后每一项系数进进位搞一搞就行了
(数组一定要开到2的次数..要不然极端数据会RE)
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=;
const double Pi=acos(-); struct Cpx{
double x,y;
Cpx(double xx=,double yy=){x=xx;y=yy;}
}X[maxn],Y[maxn];
Cpx operator *(Cpx a,Cpx b){return Cpx(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
Cpx operator +(Cpx a,Cpx b){return Cpx(a.x+b.x,a.y+b.y);}
Cpx operator -(Cpx a,Cpx b){return Cpx(a.x-b.x,a.y-b.y);}
int N,M,rev[maxn],ans[maxn]; void rd(Cpx *A){
char c=getchar();
while(c<''||c>'') c=getchar();
int i=N-;
while(c>=''&&c<='') A[i--].x=(int)(c-''),c=getchar();
} void fft(Cpx *A,int opt){
for(int i=;i<N;i++) if(i<rev[i]) swap(A[i],A[rev[i]]);
for(int l=;l<N;l<<=){
Cpx wn=Cpx(cos(Pi/l),opt*sin(Pi/l));int step=l<<;
for(int i=;i<N;i+=step){
Cpx w=Cpx(,);
for(int k=;k<l;k++,w=w*wn){
Cpx a=A[i+k],b=A[i+k+l]*w;
A[i+k]=a+b;A[i+k+l]=a-b;
}
}
}
} int main(){
int i,j,k;
scanf("%d",&N);M=N*-;
rd(X);rd(Y);
for(i=,j=;i<M;i<<=,j++);N=i;
for(i=;i<N;i++) rev[i]=(rev[i>>]>>)|((i&)<<(j-));
fft(X,);fft(Y,);
for(i=;i<N;i++) X[i]=X[i]*Y[i];fft(X,-);
for(i=;i<M;i++)
j=(int)(X[i].x/N+0.5),ans[i+]=(ans[i]+j)/,ans[i]=(ans[i]+j)%;
for(i=M;i>=&&!ans[i];i--);
for(;i>=;i--) printf("%d",ans[i]);
}
luogu1919 A*BProblem升级版 (FFT)的更多相关文章
- 洛谷.1919.[模板]A*B Problem升级版(FFT)
题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 ...
- P1919 【模板】A*B Problem升级版 /// FFT模板
题目大意: 给定l,输入两个位数为l的数A B 输出两者的乘积 FFT讲解 这个讲解蛮好的 就是讲解里面贴的模板是错误的 struct cpx { double x,y; cpx(double _x= ...
- 初探FFT(快速傅里叶变换)
第一次接触省选的知识点呢!zrf大佬在课堂上讲的非常清楚,但由于本蒟蒻实在太菜了,直接掉线了.今天赶紧恶补一下. 那么这篇博客将分为两块,第一块是FFT的推导和实现,第二块则是FFT在OI上的应用 因 ...
- 【Luogu1919】 A*B Problem升级版(FFT)
题面戳我 题解 把每个数都直接看做一个多项式,每一位就是一项 现在求用FFT求出卷积 然后考虑一下进位就可以啦 #include<iostream> #include<cstdio& ...
- Luogu1919 【模板】A*B Problem升级版(FFT)
简单的\(A*B\) \(Problem\),卡精度卡到想女装 #include <iostream> #include <cstdio> #include <cstri ...
- 洛谷P1919 【模板】A*B Problem升级版 题解(FFT的第一次实战)
洛谷P1919 [模板]A*B Problem升级版(FFT快速傅里叶) 刚学了FFT,我们来刷一道模板题. 题目描述 给定两个长度为 n 的两个十进制数,求它们的乘积. n<=100000 如 ...
- [Luogu 1919]【模板】A*B Problem升级版(FFT快速傅里叶)
Description 给出两个n位10进制整数x和y,你需要计算x*y. Input 第一行一个正整数n. 第二行描述一个位数为n的正整数x. 第三行描述一个位数为n的正整数y. Output 输出 ...
- Luogu P1919 【模板】A*B Problem升级版(FFT快速傅里叶_FFT
这其实就是一道裸的FFT 核心思想:把两个数拆成两个多项式用FFT相乘,再反序输出 py解法如下: input() print(int(input())*int(input())) 皮一下hihi f ...
- 洛谷 P1919 【模板】A*B Problem升级版(FFT快速傅里叶)
题目来源 吐槽下P3803都是紫题... 真心好写,本想一遍过的...但是 我真是太菜了... #include<bits/stdc++.h> using namespace std; ; ...
随机推荐
- 【问题解决方案】editplus中批量将ANSI转换为utf-8
来自一个用editplus写java程序但是上传到GitHub里中文乱码的故事 大致步骤: editplus全部打开之后(打开为何种编码不重要): (全部打开是指在左下方的文件列表选中-->右击 ...
- python selenium中如何测试360等基于chrome内核的浏览器
转自:https://blog.csdn.net/five3/article/details/50013159 直接上代码,注意是基于chrome内核的浏览器,基于ie的请替换其中的chrome方法为 ...
- connect、resource和dba三种标准角色
授权语句:grant connect,resource,dba to zwserver 经过授权以后,用户拥有connect.resource和dba三个角色的权限: (1)Connect 角色,是授 ...
- ::class 意思
自 PHP 5.5 起,关键词 class 也可用于类名的解析.使用 ClassName::class 你可以获取一个字符串,包含了类 ClassName 的完全限定名称.这对使用了 命名空间 的类尤 ...
- [转帖]FORFILES 的简单介绍。
FORFILES https://blog.csdn.net/sandy9919/article/details/82932460 命令格式: forfiles.exe /p "D:\备份& ...
- day 7-12 数据库的基本操作和存储引擎
一. 储备知识 数据库服务器:一台高性能计算机 数据库管理系统:mysql(mssql等),是一个软件 数据库:db1(student_db),是一个文件夹 表:studen_info 是一个文件 记 ...
- vue-axios的application/x-www-form-urlencod的post请求无法解析参数
vue-axios的post会先将对象转为json然后再根据headers的设置再转一次格式,可以将参数先用qs.stringify()转一次再传输
- Django的分页和中间件
一.分页 Django的分页器(paginator) view.py from django.shortcuts import render,HttpResponse # Create your vi ...
- Yii2控制台程序最佳实践
模板工程标准的控制台程序要素: (1)完整明确文字提示用户(并且使用红,绿,黄三种颜色标识提示文字:红色为错误相关,绿色为成功相关,黄色为进行中提示) (2)告知用户运行进度(完成任务的一部分即显示进 ...
- Log4j2配置与使用
依赖包: <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-api --> <depend ...