torch.nn.functional中softmax的作用及其参数说明
参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/functional/#_1
class torch.nn.Softmax(input, dim)
或:
torch.nn.functional.softmax(input, dim)
对n维输入张量运用Softmax函数,将张量的每个元素缩放到(0,1)区间且和为1。Softmax函数定义如下:
参数:
dim:指明维度,dim=0表示按列计算;dim=1表示按行计算。默认dim的方法已经弃用了,最好声明dim,否则会警告:
UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.
shape:
- 输入:(N, L)
- 输出:(N, L)
返回结果是一个与输入维度dim相同的张量,每个元素的取值范围在(0,1)区间。
例子:
import torch from torch import nn
from torch import autograd m = nn.Softmax()
input = autograd.Variable(torch.randn(, ))
print(input)
print(m(input))
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
tensor([[ 0.2854, 0.1708, 0.4308],
[-0.1983, 2.0705, 0.1549]])
test.py:: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.
print(m(input))
tensor([[0.3281, 0.2926, 0.3794],
[0.0827, 0.7996, 0.1177]])
可见默认按行计算,即dim=1
更明显的例子:
import torch import torch.nn.functional as F x= torch.Tensor( [ [,,,],[,,,],[,,,]]) y1= F.softmax(x, dim = ) #对每一列进行softmax
print(y1) y2 = F.softmax(x,dim =) #对每一行进行softmax
print(y2) x1 = torch.Tensor([,,,])
print(x1) y3 = F.softmax(x1,dim=) #一维时使用dim=,使用dim=1报错
print(y3)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
tensor([[0.3333, 0.3333, 0.3333, 0.3333],
[0.3333, 0.3333, 0.3333, 0.3333],
[0.3333, 0.3333, 0.3333, 0.3333]])
tensor([[0.0321, 0.0871, 0.2369, 0.6439],
[0.0321, 0.0871, 0.2369, 0.6439],
[0.0321, 0.0871, 0.2369, 0.6439]])
tensor([., ., ., .])
tensor([0.0321, 0.0871, 0.2369, 0.6439])
因为列的值相同,所以按列计算时每一个所占的比重都是0.3333;行都是[1,2,3,4],所以按行计算,比重结果都为[0.0321, 0.0871, 0.2369, 0.6439]
一维使用dim=1报错:
RuntimeError: Dimension out of range (expected to be in range of [-, ], but got )
torch.nn.functional中softmax的作用及其参数说明的更多相关文章
- 从 relu 的多种实现来看 torch.nn 与 torch.nn.functional 的区别与联系
从 relu 的多种实现来看 torch.nn 与 torch.nn.functional 的区别与联系 relu多种实现之间的关系 relu 函数在 pytorch 中总共有 3 次出现: torc ...
- PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx
PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx 在写 PyTorch 代码时,我们会发现一些功能重复的操作,比如卷积.激活.池化等操作.这些操作分别可 ...
- [pytorch笔记] torch.nn vs torch.nn.functional; model.eval() vs torch.no_grad(); nn.Sequential() vs nn.moduleList
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和n ...
- Pytorch本人疑问(1) torch.nn和torch.nn.functional之间的区别
在写代码时发现我们在定义Model时,有两种定义方法: torch.nn.Conv2d()和torch.nn.functional.conv2d() 那么这两种方法到底有什么区别呢,我们通过下述代码看 ...
- pytorch torch.nn.functional实现插值和上采样
interpolate torch.nn.functional.interpolate(input, size=None, scale_factor=None, mode='nearest', ali ...
- PyTorch官方中文文档:torch.nn
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom ...
- Pytorch中pad函数toch.nn.functional.pad()的用法
padding操作是给图像外围加像素点. 为了实际说明操作过程,这里我们使用一张实际的图片来做一下处理. 这张图片是大小是(256,256),使用pad来给它加上一个黑色的边框.具体代码如下: 1 2 ...
- torch.nn 的本质
torch.nn 的本质 PyTorch 提供了各种优雅设计的 modules 和类 torch.nn,torch.optim,Dataset 和 DataLoader 来帮助你创建并训练神经网络.为 ...
- 到底什么是TORCH.NN?
该教程是在notebook上运行的,而不是脚本,下载notebook文件. PyTorch提供了设计优雅的模块和类:torch.nn, torch.optim, Dataset, DataLoader ...
随机推荐
- 前端入门5-CSS弹性布局flex
本篇文章已授权微信公众号 dasu_Android(大苏)独家发布 声明 本系列文章内容全部梳理自以下四个来源: <HTML5权威指南> <JavaScript权威指南> MD ...
- touch.js 拖动、缩放、旋转 (鼠标手势)
可以实现手势操作:拖动.缩放.旋转.封装好的脚本方法是这样的: var cat = window.cat || {}; cat.touchjs = { left: 0, top: 0, scaleVa ...
- Spring声明式事务配置
1.首先在/WEB-INF/applicationContext.xml添加以下内容: <!-- 配置事务管理器 --> <bean id="transactionMana ...
- 关于Object数组强转成Integer数组的问题:Ljava.lang.Object; cannot be cast to [Ljava.lang.Integer;
一.当把Object数组,强转的具体的Integer数组时,会报错. 代码如下: //数组强转报错演示 Object[] numbers = {1,2,3}; Integer[] ints = (In ...
- 吴恩达机器学习笔记 —— 7 Logistic回归
http://www.cnblogs.com/xing901022/p/9332529.html 本章主要讲解了逻辑回归相关的问题,比如什么是分类?逻辑回归如何定义损失函数?逻辑回归如何求最优解?如何 ...
- PlugNT CMS v4.6.3 最新功能
PlugNT CMS v4.6.3 最新功能: 弃用标签 selected="commend,stick" 改为andwhere="commend=1 and stick ...
- Linux 安装 tomcat
创建目录 cd /usr mkdir tomcat cd tomcat 上传 tomcat rz.ftp 或者 wget 都可以 解压 tar -xzvf apache-tomcat-8.0.53.t ...
- Mysql LIMIT 分页
格式: LIMIT index, size // index:从哪一行(第几条)开始查,size:多少条 分页: LIMIT (currentPage-1)*pageSize, pageSiz ...
- Android为TV端助力 双缓存机制
废话不多说,直接贴代码! 所谓的双缓存,第一就是缓存在内存里面,第二就是缓存在SD卡里面,当你需要加载数据时,先去内存缓存中查找,如果没有再去SD卡中查找,并且用户可以自选使用哪种缓存! 缓存内存和缓 ...
- Android为TV端助力 比较完善json请求格式
public static String getHttpText(String url) { if (MyApplication.FOR_DEBUG) { Log.i(TAG, "[getH ...