【深度学习】一文读懂机器学习常用损失函数(Loss Function)
最近太忙已经好久没有写博客了,今天整理分享一篇关于损失函数的文章吧,以前对损失函数的理解不够深入,没有真正理解每个损失函数的特点以及应用范围,如果文中有任何错误,请各位朋友指教,谢谢~
损失函数(loss function)是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子:

其中,前面的均值函数表示的是经验风险函数,L代表的是损失函数,后面的Φ是正则化项(regularizer)或者叫惩罚项(penalty term),它可以是L1,也可以是L2,或者其他的正则函数。整个式子表示的意思是找到使目标函数最小时的θ值。下面主要列出几种常见的损失函数。
理解:损失函数旨在表示出logit和label的差异程度,不同的损失函数有不同的表示意义,也就是在最小化损失函数过程中,logit逼近label的方式不同,得到的结果可能也不同。
一般情况下,softmax和sigmoid使用交叉熵损失(logloss),hingeloss是SVM推导出的,hingeloss的输入使用原始logit即可。
一、LogLoss对数损失函数(逻辑回归,交叉熵损失)
有些人可能觉得逻辑回归的损失函数就是平方损失,其实并不是。平方损失函数可以通过线性回归在假设样本是高斯分布的条件下推导得到,而逻辑回归得到的并不是平方损失。在逻辑回归的推导中,它假设样本服从伯努利分布(0-1分布),然后求得满足该分布的似然函数,接着取对数求极值等等。而逻辑回归并没有求似然函数的极值,而是把极大化当做是一种思想,进而推导出它的经验风险函数为:最小化负的似然函数(即max F(y, f(x)) —> min -F(y, f(x)))。从损失函数的视角来看,它就成了log损失函数了。
log损失函数的标准形式:

刚刚说到,取对数是为了方便计算极大似然估计,因为在MLE(最大似然估计)中,直接求导比较困难,所以通常都是先取对数再求导找极值点。损失函数L(Y, P(Y|X))表达的是样本X在分类Y的情况下,使概率P(Y|X)达到最大值(换言之,就是利用已知的样本分布,找到最有可能(即最大概率)导致这种分布的参数值;或者说什么样的参数才能使我们观测到目前这组数据的概率最大)。因为log函数是单调递增的,所以logP(Y|X)也会达到最大值,因此在前面加上负号之后,最大化P(Y|X)就等价于最小化L了。
逻辑回归的P(Y=y|x)表达式如下(为了将类别标签y统一为1和0,下面将表达式分开表示):

将它带入到上式,通过推导可以得到logistic的损失函数表达式,如下:

逻辑回归最后得到的目标式子如下:

上面是针对二分类而言的。这里需要解释一下:之所以有人认为逻辑回归是平方损失,是因为在使用梯度下降来求最优解的时候,它的迭代式子与平方损失求导后的式子非常相似,从而给人一种直观上的错觉。
这里有个PDF可以参考一下:Lecture 6: logistic regression.pdf.
注意:softmax使用的即为交叉熵损失函数,binary_cossentropy为二分类交叉熵损失,categorical_crossentropy为多分类交叉熵损失,当使用多分类交叉熵损失函数时,标签应该为多分类模式,即使用one-hot编码的向量。
二、平方损失函数(最小二乘法, Ordinary Least Squares )
最小二乘法是线性回归的一种,最小二乘法(OLS)将问题转化成了一个凸优化问题。在线性回归中,它假设样本和噪声都服从高斯分布(为什么假设成高斯分布呢?其实这里隐藏了一个小知识点,就是中心极限定理,可以参考【central limit theorem】),最后通过极大似然估计(MLE)可以推导出最小二乘式子。最小二乘的基本原则是:最优拟合直线应该是使各点到回归直线的距离和最小的直线,即平方和最小。换言之,OLS是基于距离的,而这个距离就是我们用的最多的欧几里得距离。为什么它会选择使用欧式距离作为误差度量呢(即Mean squared error, MSE),主要有以下几个原因:
- 简单,计算方便;
- 欧氏距离是一种很好的相似性度量标准;
- 在不同的表示域变换后特征性质不变。
平方损失(Square loss)的标准形式如下:

当样本个数为n时,此时的损失函数变为:

Y-f(X)表示的是残差,整个式子表示的是残差的平方和,而我们的目的就是最小化这个目标函数值(注:该式子未加入正则项),也就是最小化残差的平方和(residual sum of squares,RSS)。
而在实际应用中,通常会使用均方差(MSE)作为一项衡量指标,公式如下:

上面提到了线性回归,这里额外补充一句,我们通常说的线性有两种情况,一种是因变量y是自变量x的线性函数,一种是因变量y是参数α的线性函数。在机器学习中,通常指的都是后一种情况。
三、指数损失函数(Adaboost)
学过Adaboost算法的人都知道,它是前向分步加法算法的特例,是一个加和模型,损失函数就是指数函数。在Adaboost中,经过m此迭代之后,可以得到fm(x):

Adaboost每次迭代时的目的是为了找到最小化下列式子时的参数α 和G:

而指数损失函数(exp-loss)的标准形式如下

可以看出,Adaboost的目标式子就是指数损失,在给定n个样本的情况下,Adaboost的损失函数为:

关于Adaboost的推导,可以参考Wikipedia:AdaBoost或者《统计学习方法》P145.
四、Hinge损失函数(SVM)
在机器学习算法中,hinge损失函数和SVM是息息相关的。在线性支持向量机中,最优化问题可以等价于下列式子:

下面来对式子做个变形,令:

于是,原式就变成了:

如若取λ=1/(2C),式子就可以表示成:

可以看出,该式子与下式非常相似:

前半部分中的 l 就是hinge损失函数,而后面相当于L2正则项。
Hinge 损失函数的标准形式

可以看出,当|y|>=1时,L(y)=0。
更多内容,参考Hinge-loss。
补充一下:在libsvm中一共有4中核函数可以选择,对应的是-t参数分别是:
- 0-线性核;
- 1-多项式核;
- 2-RBF核;
- 3-sigmoid核。
五、其它损失函数
除了以上这几种损失函数,常用的还有:
0-1损失函数

绝对值损失函数

下面来看看几种损失函数的可视化图像,对着图看看横坐标,看看纵坐标,再看看每条线都表示什么损失函数,多看几次好好消化消化。

六、Keras / TensorFlow 中常用 Cost Function 总结
mean_squared_error或mse
mean_absolute_error或mae
mean_absolute_percentage_error或mape
mean_squared_logarithmic_error或msle
squared_hinge
hinge
categorical_hinge
binary_crossentropy(亦称作对数损失,logloss)
logcosh
categorical_crossentropy:亦称作多类的对数损失,注意使用该目标函数时,需要将标签转化为形如
(nb_samples, nb_classes)的二值序列sparse_categorical_crossentrop:如上,但接受稀疏标签。注意,使用该函数时仍然需要你的标签与输出值的维度相同,你可能需要在标签数据上增加一个维度:
np.expand_dims(y,-1)kullback_leibler_divergence:从预测值概率分布Q到真值概率分布P的信息增益,用以度量两个分布的差异.
poisson:即
(predictions - targets * log(predictions))的均值cosine_proximity:即预测值与真实标签的余弦距离平均值的相反数
需要记住的是:参数越多,模型越复杂,而越复杂的模型越容易过拟合。过拟合就是说模型在训练数据上的效果远远好于在测试集上的性能。此时可以考虑正则化,通过设置正则项前面的hyper parameter,来权衡损失函数和正则项,减小参数规模,达到模型简化的目的,从而使模型具有更好的泛化能力。
【深度学习】一文读懂机器学习常用损失函数(Loss Function)的更多相关文章
- 一文读懂机器学习大杀器XGBoost原理
http://blog.itpub.net/31542119/viewspace-2199549/ XGBoost是boosting算法的其中一种.Boosting算法的思想是将许多弱分类器集成在一起 ...
- OpenHarmony 3GPP协议开发深度剖析——一文读懂RIL
(以下内容来自开发者分享,不代表 OpenHarmony 项目群工作委员会观点)本文转载自:https://harmonyos.51cto.com/posts/10608 夏德旺 软通动力信息技术(集 ...
- 一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm)
一文读懂 深度强化学习算法 A3C (Actor-Critic Algorithm) 2017-12-25 16:29:19 对于 A3C 算法感觉自己总是一知半解,现将其梳理一下,记录在此,也 ...
- 一文读懂对抗生成学习(Generative Adversarial Nets)[GAN]
一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是ga ...
- 即时通讯新手入门:一文读懂什么是Nginx?它能否实现IM的负载均衡?
本文引用了“蔷薇Nina”的“Nginx 相关介绍(Nginx是什么?能干嘛?)”一文部分内容,感谢作者的无私分享. 1.引言 Nginx(及其衍生产品)是目前被大量使用的服务端反向代理和负载均衡 ...
- Java8 函数式【1】:一文读懂逆变
Java8 函数式[1]:一文读懂逆变 禁止转载 pure function 协变 逆变 Java8 引入了函数式接口,从此方法传参可以传递函数了,有人说: 不就是传一个方法吗,语法糖! lambda ...
- 一文读懂HTTP/2及HTTP/3特性
摘要: 学习 HTTP/2 与 HTTP/3. 前言 HTTP/2 相比于 HTTP/1,可以说是大幅度提高了网页的性能,只需要升级到该协议就可以减少很多之前需要做的性能优化工作,当然兼容问题以及如何 ...
- 一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现
一文读懂AI简史:当年各国烧钱许下的愿,有些至今仍未实现 导读:近日,马云.马化腾.李彦宏等互联网大佬纷纷亮相2018世界人工智能大会,并登台演讲.关于人工智能的现状与未来,他们提出了各自的观点,也引 ...
- 一文读懂高性能网络编程中的I/O模型
1.前言 随着互联网的发展,面对海量用户高并发业务,传统的阻塞式的服务端架构模式已经无能为力.本文(和下篇<高性能网络编程(六):一文读懂高性能网络编程中的线程模型>)旨在为大家提供有用的 ...
随机推荐
- java面试整理(会持续更新..)
本人出道至今,经历了大大小小百余场战斗,,,下面整理的面试题有些有答案,有些没答案,那个谁说过:"要抱着怀疑的态度去编程,所以,即便有答案,也不一定正确,即便我本地正确,但是由于屏幕前的你和 ...
- Java 一些知识点总结
本篇文章会对面试中常遇到的Java技术点进行全面深入的总结,帮助我们在面试中更加得心应手,不参加面试的同学也能够借此机会梳理一下自己的知识体系,进行查漏补缺(阅读本文需要有一定的Java基础).本文的 ...
- Scala并发编程【快速入门】
1.简介 Scala的actor提供了一种基于事件的轻量级线程.只要使用scala.actors.Actor伴生对象的actor()方法,就可以创建一个actor.它接受一个函数值/闭包做参数,一创建 ...
- Mysql----修改MySQL5.7的root的密码
在开始服务的情况之下 进入mysql 更改密码:update mysql.user set authentication_string=password('新的密码') where user='r ...
- 上传github文件及所出现的问题
上传github所发现的问题 准备工作 使用 git bush 输入下面的命令 git config --global user.email "you@example.com" g ...
- C# -- HttpWebRequest 和 HttpWebResponse 的使用
C# -- HttpWebRequest 和 HttpWebResponse 的使用 结合使用HttpWebRequest 和 HttpWebResponse,来判断一个网页地址是否可以正常访问. 1 ...
- Java入门(五):控制流程
在Java中,使用条件语句和循环结构确定控制流程,在本文中,主要包括块作用域.条件语句.循环结构.中断循环这四部分. 一.块作用域 块,也叫复合语句,是指由一对大括号括起来的若干条Java语句.块决定 ...
- tomcat session 共享
1. nginx+tomcat7+memcached 安装JDK7sudo apt-get install java7-jdk 安装tomcat7Tomcat7下载地址http://mirror.bj ...
- python六十七课——网络编程(基础知识了解)
网络编程: 什么是网络编程? 网络:它是一种隐形的媒介:可以将多台计算机使用(将它们连接到一起) 网络编程:将多台计算机之间可以相互通信了(做数据交互) 一旦涉及到网络编程,划分为两个方向存在,一方我 ...
- utc时间转成local时间
public static Date utcToLocal(String utcTime){ SimpleDateFormat sdf = new SimpleDateFormat("yyy ...