POJ 1564 Sum It Up (DFS+剪枝)
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 5820 | Accepted: 2970 |
Description
equal 4: 4, 3+1, 2+2, and 2+1+1. (A number can be used within a sum as many times as it appears in the list, and a single number counts as a sum.) Your job is to solve this problem in general.
Input
input; otherwise, t will be a positive integer less than 1000, n will be an integer between 1 and 12 (inclusive), and x 1 , . . . , x n will be positive integers less than 100. All numbers will be separated by exactly one space. The numbers in each list appear
in nonincreasing order, and there may be repetitions.
Output
A number may be repeated in the sum as many times as it was repeated in the original list. The sums themselves must be sorted in decreasing order based on the numbers appearing in the sum. In other words, the sums must be sorted by their first number; sums
with the same first number must be sorted by their second number; sums with the same first two numbers must be sorted by their third number; and so on. Within each test case, all sums must be distinct; the same sum cannot appear twice.
Sample Input
4 6 4 3 2 2 1 1
5 3 2 1 1
400 12 50 50 50 50 50 50 25 25 25 25 25 25
0 0
Sample Output
Sums of 4:
4
3+1
2+2
2+1+1
Sums of 5:
NONE
Sums of 400:
50+50+50+50+50+50+25+25+25+25
50+50+50+50+50+25+25+25+25+25+25
Source
DFS。值得注意的地方是去重,我用的是和上一递归pre比較。假设同样则减枝。
#include<iostream>
#include<cstdio> using namespace std; int num[15],ans[15];
int flag,t,n; void dfs(int now,int sum,int cur)
{
if(sum==0)
{
flag=1;
printf("%d",ans[0]);
for(int i=1;i<cur;i++)
{
printf("+%d",ans[i]);
}
printf("\n");
return;
}
else
{
int pre=-1;
for(int i=now;i<n;i++)
{
if(sum>=num[i]&&num[i]!=pre)
{
pre=num[i]; //此处与上一次递归的num[i],即pre,作比較。
ans[cur]=num[i];
dfs(i+1,sum-num[i],cur+1);
}
}
}
} int main()
{
while(scanf("%d%d",&t,&n),n&&t)
{
flag=0;
printf("Sums of %d:\n",t);
for(int i=0;i<n;i++)
scanf("%d",num+i);
dfs(0,t,0); if(!flag)
printf("NONE\n");
} return 0; }
即一个数组ans[15],并没有什么值得覆盖问题。
POJ 1564 Sum It Up (DFS+剪枝)的更多相关文章
- poj 1564 Sum It Up(dfs)
Sum It Up Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7191 Accepted: 3745 Descrip ...
- poj 1564 Sum It Up | zoj 1711 | hdu 1548 (dfs + 剪枝 or 判重)
Sum It Up Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other) Total Sub ...
- poj 1564 Sum It Up (DFS+ 去重+排序)
http://poj.org/problem?id=1564 该题运用DFS但是要注意去重,不能输出重复的答案 两种去重方式代码中有标出 第一种if(a[i]!=a[i-1])意思是如果这个数a[i] ...
- poj 1564 Sum It Up
题目连接 http://poj.org/problem?id=1564 Sum It Up Description Given a specified total t and a list of n ...
- POJ 1564 Sum It Up(DFS)
Sum It Up Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit St ...
- poj 1564 Sum It Up【dfs+去重】
Sum It Up Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6682 Accepted: 3475 Descrip ...
- poj 1564 Sum It Up 搜索
题意: 给出一个数T,再给出n个数.若n个数中有几个数(可以是一个)的和是T,就输出相加的式子.不过不能输出相同的式子. 分析: 运用的是回溯法.比较特殊的一点就是不能输出相同的式子.这个可以通过ma ...
- 【POJ - 1190】生日蛋糕 (dfs+剪枝)
Descriptions: 7月17日是Mr.W的生日,ACM-THU为此要制作一个体积为Nπ的M层生日蛋糕,每层都是一个圆柱体. 设从下往上数第i(1 <= i <= M)层蛋糕是半径为 ...
- POJ 1564 经典dfs
1.POJ 1564 Sum It Up 2.总结: 题意:在n个数里输出所有相加为t的情况. #include<iostream> #include<cstring> #in ...
随机推荐
- Java时间间隔问题在Android中的使用
转载请注明出处:http://www.cnblogs.com/cnwutianhao/p/6606720.html 假设我们在做项目的时候,获取到了一段音频,也知道音频长度,那么我们想对音频做一些处理 ...
- C# NPOCO 轻量级ORM框架(进阶)
继续翻译NPOCO wiki. 这篇将home上 下面的几个页面翻译. wiki地址:https://github.com/schotime/NPoco/wiki 上一篇: http://www.cn ...
- 冒泡排序(高级版)之C++实现
冒泡排序(高级版)之C++实现 一.源代码:BubbleSortHigh.cpp #include<iostream> using namespace std; /*定义输出一维数组的函数 ...
- UOJ 310 黎明前的巧克力(FWT)
[题目链接] http://uoj.ac/problem/310 [题目大意] 给出一个数集,A从中选择一些数,B从中选择一些数,不能同时不选 要求两者选择的数异或和为0,问方案数 [题解] 题目等价 ...
- C语言学习常见错误分析
错误分类 语法错 逻辑错 运行错 0.忘记定义变量: int main() { x=3;y=6; printf("%d/n",x+y); } 1.C语言的变量一定要先定义 ...
- 重庆市队选拔 CQOI2015 解题报告
文章链接:http://www.cnblogs.com/Asm-Definer/p/4434601.html 题目链接:http://pan.baidu.com/s/1mgxIKli 官方数据:htt ...
- Loj10166 数字游戏2
题目描述 由于科协里最近真的很流行数字游戏,某人又命名了一种取模数,这种数字必须满足各位数字之和 modN 为 000.现在大家又要玩游戏了,指定一个整数闭区间 [a,b][a,b][a,b],问这个 ...
- Git_Bug分支
软件开发中,bug就像家常便饭一样.有了bug就需要修复,在Git中,由于分支是如此的强大,所以,每个bug都可以通过一个新的临时分支来修复,修复后,合并分支,然后将临时分支删除. 当你接到一个修复一 ...
- PHP实现文件下载的核心代码
PHP实现文件下载的核心代码:
- WindowsPhone&Windows8.1&Windows8&Unity3d 填坑日记
近期的游戏开发大体上接近尾声,总结了不少关于Unity3d面向Windows几大平台开发时遇到的各种坑以及怎样填坑的经验.总的来说,Windows8.1 Windows8/RT以及WindowsPho ...