2018 ACM-ICPC 中国大学生程序设计竞赛线上赛:https://www.jisuanke.com/contest/1227

题目链接:https://nanti.jisuanke.com/t/26219

Rock Paper Scissors Lizard Spock

Description:

Didi is a curious baby. One day, she finds a curious game, which named Rock Paper Scissors Lizard Spock.

The game is an upgraded version of the game named Rock, Paper, Scissors. Each player chooses an option . And then those players show their choices that was previously hidden at the same time. If the winner defeats the others, she gets a point.

The rules are as follows.

Scissors cuts Paper

Paper covers Rock

Rock crushes Lizard

Lizard poisons Spock

Spock smashes Scissors

Scissors decapitates Lizard

Lizard eats Paper

Paper disproves Spock

Spock vaporizes Rock

(and as it always has) Rock crushes Scissors.

(this pic is from baike.baidu.com)

But
Didi is a little silly, she always loses the game. In order to keep her
calm, her friend Tangtang writes down the order on a list and show it
to her. Didi also writes down her order on another list, like

.

(Rock-R Paper-P Scissors-S Lizard-L Spock-K)

However, Didi may skip some her friends' choices to find the position to get the most winning points of the game, like

Can you help Didi find the max points she can get?

Input:

The first line contains the list of choices of Didi's friend, the second line contains the list of choices of Didi.

(1<=len(s2)<=len(s1)<=1e6)

Output:

One line contains an integer indicating the maximum number of wining point.

忽略每行输出的末尾多余空格

样例输入1

RRRRRRRRRLLL
RRRS

样例输出1

3

样例输入2

RSSPKKLLRKPS
RSRS

样例输出2

2
ACM-ICPC Asia Training League   宁夏理工学院

题解:

因为之前做过codeforces 528D. Fuzzy Search  ,感觉就不难了,你要是不会这题可以先去做cf528d,有个详细的题解:https://blog.csdn.net/u013368721/article/details/45565729

【FFT求字符串匹配的问题一般都是将模式串反转,然后将其与主串进行卷积运算】

枚举五种出拳方式,每种都做fft,最后扫一遍最大值即可求出最佳匹配出的赢的最大次数。(具体fft原理不懂orz,我就是套着原来板子写的...)

#include<bits/stdc++.h>
#define CLR(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long ll;
const int N = <<;
const double PI = acos(-1.0);
int n, m;
struct Complex {
double x,y;
Complex(double _x = 0.0,double _y = 0.0){
x = _x; y = _y;
}
Complex operator -(const Complex &b)const{
return Complex(x-b.x,y-b.y);
}
Complex operator +(const Complex &b)const{
return Complex(x+b.x,y+b.y);
}
Complex operator *(const Complex &b)const{
return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
Complex operator * (const double &b)const{
return Complex(x * b,y * b);
}
Complex operator / (const double &b)const{
return Complex(x / b,y / b);
}
};
void change(Complex y[], int len) {
int i, j, k;
for(i = , j = len/;i <len-;i++) {
if(i < j)swap(y[i],y[j]);
k = len/;
while(j >= k) {
j -= k;
k /= ;
}
if(j < k) j += k;
}
}
void fft(Complex y[],int len,int on) {
change(y,len);
for(int h = ; h <= len; h <<= ) {
Complex wn(cos(-on**PI/h),sin(-on**PI/h));
for(int j = ;j < len;j+=h) {
Complex w(,);
for(int k = j;k < j+h/;k++) {
Complex u = y[k];
Complex t = w*y[k+h/];
y[k] = u+t;
y[k+h/] = u-t;
w = w*wn;
}
}
}
if(on == -)
for(int i = ;i < len;i++)
y[i].x /= len;
}
Complex a[N], b[N], c[N];
char s[N], t[N];
int sum[N];
int main() {
int i, j, ans = , ma, nn;
scanf("%s %s", s, t);
n = strlen(s);
m = strlen(t);
reverse(t, t+m);
ma = max(n, m); nn = ;
while(nn < * ma) nn<<=;
CLR(c, ); CLR(sum, );
//R vs L S
CLR(a, ); CLR(b, );
for(i = ; i < n; ++i) a[i].x = (s[i]=='L'||s[i]=='S');
for(i = ; i < m; ++i) b[i].x = (t[i]=='R');
fft(a, nn, ); fft(b, nn, );
for(i = ; i < nn ;++i) c[i] = a[i] * b[i];
fft(c, nn, -);
for(i = m-; i < n; ++i)
sum[i] += (int)(c[i].x+0.5);
//P vs R K
CLR(a, ); CLR(b, );
for(i = ; i < n; ++i) a[i].x = (s[i]=='R'||s[i]=='K');
for(i = ; i < m; ++i) b[i].x = (t[i]=='P');
fft(a, nn, ); fft(b, nn, );
for(i = ; i < nn ;++i) c[i] = a[i] * b[i];
fft(c, nn, -);
for(i = m-; i < n; ++i)
sum[i] += (int)(c[i].x+0.5);
//S vs P L
CLR(a, ); CLR(b, );
for(i = ; i < n; ++i) a[i].x = (s[i]=='P'||s[i]=='L');
for(i = ; i < m; ++i) b[i].x = (t[i]=='S');
fft(a, nn, ); fft(b, nn, );
for(i = ; i < nn ;++i) c[i] = a[i] * b[i];
fft(c, nn, -);
for(i = m-; i < n; ++i)
sum[i] += (int)(c[i].x+0.5);
//L vs P K
CLR(a, ); CLR(b, );
for(i = ; i < n; ++i) a[i].x = (s[i]=='P'||s[i]=='K');
for(i = ; i < m; ++i) b[i].x = (t[i]=='L');
fft(a, nn, ); fft(b, nn, );
for(i = ; i < nn ;++i) c[i] = a[i] * b[i];
fft(c, nn, -);
for(i = m-; i < n; ++i)
sum[i] += (int)(c[i].x+0.5);
//K vs R S
CLR(a, ); CLR(b, );
for(i = ; i < n; ++i) a[i].x = (s[i]=='R'||s[i]=='S');
for(i = ; i < m; ++i) b[i].x = (t[i]=='K');
fft(a, nn, ); fft(b, nn, );
for(i = ; i < nn ;++i) c[i] = a[i] * b[i];
fft(c, nn, -);
for(i = m-; i < n; ++i)
sum[i] += (int)(c[i].x+0.5);
for(i = m-; i < n; ++i) ans = max(ans, sum[i]);
printf("%d\n", ans);
return ;
}

2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 H题 Rock Paper Scissors Lizard Spock.(FFT字符串匹配)的更多相关文章

  1. 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 F题 Clever King(最小割)

    2018 ACM-ICPC 中国大学生程序设计竞赛线上赛:https://www.jisuanke.com/contest/1227 题目链接:https://nanti.jisuanke.com/t ...

  2. 计蒜客 25985.Goldbach-米勒拉宾素数判定(大素数) (2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 B)

    若干年之前的一道题,当时能写出来还是超级开心的,虽然是个板子题.一直忘记写博客,备忘一下. 米勒拉判大素数,关于米勒拉宾是个什么东西,传送门了解一下:biubiubiu~ B. Goldbach 题目 ...

  3. 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 I. Reversion Count (java大数)

    Description: There is a positive integer X, X's reversion count is Y. For example, X=123, Y=321; X=1 ...

  4. 2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 D Merchandise (斜率优化)

    Description: The elderly aunts always like to look for bargains and preferential merchandise. Now th ...

  5. 2017年中国大学生程序设计竞赛-中南地区赛暨第八届湘潭市大学生计算机程序设计大赛题解&源码(A.高斯消元,D,模拟,E,前缀和,F,LCS,H,Prim算法,I,胡搞,J,树状数组)

    A------------------------------------------------------------------------------------ 题目链接:http://20 ...

  6. 第 46 届 ICPC 国际大学生程序设计竞赛亚洲区域赛(沈阳)

    有时候,很简单的模板题,可能有人没有做出来,(特指 I ),到时候一定要把所有的题目全部看一遍 目录 B 题解 E F 题解 H I 题解&代码 J B 输入样例 3 2 1 2 1 2 3 ...

  7. 2018中国大学生程序设计竞赛 - 网络选拔赛 1001 - Buy and Resell 【优先队列维护最小堆+贪心】

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6438 Buy and Resell Time Limit: 2000/1000 MS (Java/O ...

  8. 2018中国大学生程序设计竞赛 - 网络选拔赛 1010 YJJ's Salesman 【离散化+树状数组维护区间最大值】

    题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6447 YJJ's Salesman Time Limit: 4000/2000 MS (Java/O ...

  9. 2018中国大学生程序设计竞赛 - 网络选拔赛 1009 - Tree and Permutation 【dfs+树上两点距离和】

    Tree and Permutation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

随机推荐

  1. volatile特性

    volatile保证可见性 一旦一个共享变量(类的成员变量.类的静态成员变量)被volatile修饰之后,那么就具备了两层语义: 1)保证了不同线程对这个变量进行操作的可见性,即一个线程修改了某个变量 ...

  2. 新增的input

    原有的input类型: input标签原有的type类型: text(普通文本框,默认字) button(普通按钮) password(密码框)   submit(提交按钮) radio(单选框) r ...

  3. dubbo基于tcp协议的RPC框架

    什么是 RPC 框架 谁能用通俗的语言解释一下什么是 RPC 框架? - 远程过程调用协议RPC(Remote Procedure Call Protocol) 首先了解什么叫RPC,为什么要RPC, ...

  4. 三角形-->九九乘法表

    使用嵌套循环打印九行*组成的三角形: * ** *** ...... *********(9个) public class Triangle { /** * 使用嵌套循环打印九行*组成的三角形 */ ...

  5. PyCharm 自定义模版

    PyCharm 自定义模板 创建一个新的模板: 点击 Preferences... 选项或者按下快捷键 Command(⌘) + , 打开设置对话框. 找到 在 Editor 下的 File and ...

  6. thinkphp3.2 success方法和redirect方法

    $this->redirect('showlist',array(),3,'添加成功'); $this->success('添加成功',U('showlist'),3);

  7. 安装php扩展redis (windows环境)

    首先十分感谢网络上支持开源分享的前辈们,资源真的太丰富了,虽然也有许多优秀的国外资源被墙了... 想要给php增加redis扩展第一步当然要知道自己使用的php版本以及一些配置.查看 phpinfo ...

  8. Flutter Stack布局中定位的方式

    前言 想要记录一下Stack布局中,定位的两种方式 代码 //……省略无关代码…… child: new Column( children: <Widget>[ new SizedBox( ...

  9. SqlSugarClientHelper

    using SqlSugar; using System; using System.Collections.Generic; using System.Configuration; using Sy ...

  10. 深入理解net core中的依赖注入、Singleton、Scoped、Transient(一)

    相关文章: 深入理解net core中的依赖注入.Singleton.Scoped.Transient(一) 深入理解net core中的依赖注入.Singleton.Scoped.Transient ...