题目描述

维护一个向量集合,在线支持以下操作:
"A x y (|x|,|y| < =10^8)":加入向量(x,y);
" Q x y l r (|x|,|y| < =10^8,1 < =L < =R < =T,其中T为已经加入的向量个数)询问第L个到第R个加入的向量与向量(x,y)的点积的最大值。
    集合初始时为空


输入格式

输入的第一行包含整数N和字符s,分别表示操作数和数据类别;
    接下来N行,每行一个操作,格式如上所述。
    请注意s≠'E'时,输入中的所有整数都经过了加密。你可以使用以下程序
得到原始输入:
inline int decode (int x long long lastans) {
     return x ^ (lastans & Ox7fffffff);
}
function decode
begin
    其中x为程序读入的数,lastans为之前最后一次询问的答案。在第一次询问之前,lastans=0。

注:向量(x,y)和(z,W)的点积定义为xz+yw。


输出格式

对每个Q操作,输出一个整数表示答案。

提示

1 < =N < =4×10^5

新加数据一组..2015.315


  • 题解

    • 设当前向量为$(a,b)$集合中向量为$(x,y)$,设$z = ax+by$,有$y =  - \frac{a}{b} x + \frac{z}{b}$
    • 最优化$z$:
      • 当$b>0$即求过集合$S$中的某个点且斜率为$ - \frac{a}{b}$的直线$y$截距最大的为哪条,答案一定在上凸包上;
      • 同理$b<0$时求截距最小的为哪条;
      • $b==0$随便哪条查即可;
    • 如果维护了区间$[L,R]$的凸包就可以在里面三分;
    • 应该是可以用线段树套$splay$参照$bzoj2300$但是效率比较低;
    • 考虑直接用线段树,由于标号是顺序更新,所以一段区间的最后一个点被加入后再求区间的凸包,查询线段树查询+三分;
    • 实现上凸包的排序可以用归并,(然而并没有快TAT);
    • O(n \ log^2  \ n )
 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<stack>
#include<map>
#include<set>
#define Run(i,l,r) for(int i=l;i<=r;i++)
#define Don(i,l,r) for(int i=l;i>=r;i--)
#define ll long long
#define ld long double
#define mk make_pair
#define fir first
#define sec second
#define il inline
#define rg register
#define pb push_back
#define ls (k<<1)
#define rs (k<<1|1)
using namespace std;
const int N=;
const ll inf=1e18;
int n,cnt,sz[N<<],L[][N<<],R[][N<<];
ll ans=;
struct poi{
ll x,y;
poi(int _x=,int _y=):x(_x),y(_y){};
poi operator-(const poi&A)const{return poi(x-A.x,y-A.y);}
bool operator <(const poi&A)const{return x==A.x?y<A.y:x<A.x;}
}con[][N],Q,tmp[][N],p[N];
il char gc(){
static char*p1,*p2,s[];
if(p1==p2)p2=(p1=s)+fread(s,,,stdin);
return(p1==p2)?EOF:*p1++;
}
il int rd(){
int x=,f=; char c=gc();
while(c<''||c>''){if(c=='-')f=-;c=gc();}
while(c>=''&&c<='')x=(x<<)+(x<<)+c-'',c=gc();
return x*f;
}
il ll dot(poi A,poi B){return (ll)A.x*B.x+(ll)A.y*B.y;}
il ll crs(poi A,poi B){return (ll)A.x*B.y-(ll)A.y*B.x;}
il ll max(ll x,ll y){return x>y?x:y;}
il void build(int k,int d,int l,int r){
int mid=(l+r)>>,idl=l,idr=mid+,id=l,top,lst;
for(;idl<=mid||idr<=r;){
if(idr>r||(idl<=mid&&tmp[d+][idl]<tmp[d+][idr]))
tmp[d][id]=tmp[d+][idl],id++,idl++;
else
tmp[d][id]=tmp[d+][idr],id++,idr++;
}
con[d][L[][k]=top=l]=tmp[d][l];
for(rg int i=l+;i<=r;++i){
while(top>l&&crs(con[d][top]-con[d][top-],tmp[d][i]-con[d][top])<=)top--;
con[d][++top]=tmp[d][i];
}
R[][k]=L[][k]=lst=top;
for(rg int i=r-;i>=l;--i){
while(top>lst&&crs(con[d][top]-con[d][top-],tmp[d][i]-con[d][top])<=)top--;
if(i!=l)con[d][++top]=tmp[d][i];
}
R[][k]=top;
}
il void ask(int k,int d,int typ){
int l=L[typ][k],r=R[typ][k];
while(r-l>=){
int mid=(r-l)/,mid1=l+mid,mid2=r-mid;
if(dot(con[d][mid1],Q)<dot(con[d][mid2],Q))l=mid1;
else r=mid2;
}
for(rg int i=l;i<=r;++i)ans=max(ans,dot(con[d][i],Q));
ans=max(ans,dot(con[d][L[][k]],Q));
}
il void update(int k,int d,int l,int r,int x){
if(l==r){
sz[k]=;
L[][k]=L[][k]=R[][k]=R[][k]=x;
tmp[d][x]=con[d][x]=p[x];
}
else{
int mid=(l+r)>>;
if(x<=mid)update(ls,d+,l,mid,x);
else update(rs,d+,mid+,r,x);
sz[k]=sz[ls]+sz[rs];
if(sz[k]==r-l+)build(k,d,l,r);
}
}
il void query(int k,int d,int l,int r,int x,int y){
if(l==x&&r==y){ask(k,d,Q.y>);}
else{
int mid=(l+r)>>;
if(y<=mid)query(ls,d+,l,mid,x,y);
else if(x>mid)query(rs,d+,mid+,r,x,y);
else query(ls,d+,l,mid,x,mid),query(rs,d+,mid+,r,mid+,y);
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("bzoj3533.in","r",stdin);
freopen("bzoj3533.out","w",stdout);
#endif
char ch,tp;int x,y,l,r;
n=rd();tp=gc();
while(!isalpha(tp))tp=gc();
for(rg int i=;i<=n;++i){
ch=gc();while(!isalpha(ch))ch=gc();
if(ch=='A'){
x=rd();y=rd();
if(tp!='E')x^=ans,y^=ans;
p[++cnt]=poi(x,y);
update(,,,n,cnt);
}else{
x=rd();y=rd();l=rd();r=rd();
if(tp!='E')x^=ans,y^=ans,l^=ans,r^=ans;
Q=(poi){x,y};
ans = -inf;
query(,,,n,l,r);
printf("%lld\n",ans);
ans &= 0x7fffffff;
}
}
return ;
}//by tkys_Austin;

bzoj3533

bzoj3533【Sdoi2014】向量集的更多相关文章

  1. BZOJ3533 [Sdoi2014]向量集 【线段树 + 凸包 + 三分】

    题目链接 BZOJ3533 题解 我们设询问的向量为\((x_0,y_0)\),参与乘积的向量为\((x,y)\) 则有 \[ \begin{aligned} ans &= x_0x + y_ ...

  2. bzoj3533: [Sdoi2014]向量集

    Description 维护一个向量集合,在线支持以下操作:"A x y (|x|,|y| < =10^8)":加入向量(x,y);" Q x y l r (|x| ...

  3. BZOJ3533:[SDOI2014]向量集(线段树,三分,凸包)

    Description 维护一个向量集合,在线支持以下操作: "A x y (|x|,|y| < =10^8)":加入向量(x,y); " Q x y l r (| ...

  4. BZOJ 3533: [Sdoi2014]向量集( 线段树 + 三分 )

    答案一定是在凸壳上的(y>0上凸壳, y<0下凸壳). 线段树维护, 至多N次询问, 每次询问影响O(logN)数量级的线段树结点, 每个结点O(logN)暴力建凸壳, 然后O(logN) ...

  5. 【bzoj3533】[Sdoi2014]向量集 线段树+STL-vector维护凸包

    题目描述 维护一个向量集合,在线支持以下操作:"A x y (|x|,|y| < =10^8)":加入向量(x,y);"Q x y l r (|x|,|y| < ...

  6. bzoj 3533: [Sdoi2014]向量集 线段树维护凸包

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3533 题解: 首先我们把这些向量都平移到原点.这样我们就发现: 对于每次询问所得到的an ...

  7. bzoj 3533 [Sdoi2014]向量集 线段树+凸包+三分(+动态开数组) 好题

    题目大意 维护一个向量集合,在线支持以下操作: "A x y (|x|,|y| < =10^8)":加入向量(x,y); "Q x y l r (|x|,|y| & ...

  8. Sdoi2014 向量集

    题目描述 题解: 码力太差重构之后才$A……$ 首先求向量点积最大很容易想到凸包, 设已知$(x_0,y_0)$,求$(x,y)$满足$(x,y)*(x_0,y_0)>=(x',y')*(x_0 ...

  9. P3309 [SDOI2014]向量集

    传送门 达成成就:一人独霸三页提交 自己写的莫名其妙MLE死都不知道怎么回事,照着题解打一直RE一个点最后发现竟然是凸包上一个点求错了--四个半小时就一直用来调代码了-- 那么我们只要维护好这个凸壳, ...

  10. SDOI 2014 向量集

    [SDOI2014]向量集 题目描述 维护一个向量集合,在线支持以下操作: - "A x y (|x|,|y| < =10^8)":加入向量(x,y); - " Q ...

随机推荐

  1. QRCode 二维码

    一.生成二维码 1.二维码就是绘制成黑白相间的图片,所谓的黑白相间就是代表0和1 ,二维码大约可以容纳500多个中文,所以用途之广显而易见. 所需的jar包  http://pan.baidu.com ...

  2. Spark概述及集群部署

    Spark概述 什么是Spark (官网:http://spark.apache.org) Spark是一种快速.通用.可扩展的大数据分析引擎,2009年诞生于加州大学伯克利分校AMPLab,2010 ...

  3. Qt tableWidget 空单元格 获取选中行行号

    bool focus = tableWidget->isItemSelected(tableWidget->currentItem()); // 判断是否选中一行 Int row1 = t ...

  4. PHP 包含文件

    1.require test123.php <?php $a=1; 运行文件: <?php require('test123.php'); echo 'Hello!'; echo '< ...

  5. 2017年软件工程第十二次作业-PSP总结报告

    回顾1 1.回想一下你曾经对计算机专业的畅想 当初你是如何做出选择计算机专业的决定的?经过一个学期,你的看法改变了么,为什么? 你认为过去接触到的课程是否符合你对计算机专业的期待,为什么?经过一个学期 ...

  6. mysql和oracle查询出的一条结果中的多个字段拼接

    1,mysql concat('a','b','c')和concat_ws('a','b','c')的区别:前者如果有某个值为空,结果为空;后者如果有某个值为空,可以忽略这个控制 SELECT con ...

  7. BugPhobia准备篇章:Beta阶段前后端接口文档

    0x00:序言 Two strangers fell in love, Only one knows it wasn’t by chance. To the searching tags, you m ...

  8. No.110_第三次团队会议

    前端的易帜 前端在整个软件中有着举足轻重的地位.前端设计一般可以理解为视觉设计,前端开发则是前台代码的实现. 随着科技水平的提高和生产力的提高,人民对于审美的要求逐渐增高.在没有科技壁垒的情况下,是否 ...

  9. OO第四次作业-对前三次作业总结

    第一次作业由于直接没怎么学过java,全靠一星期速成,前几天看了java的语法,但是因为光看没有打代码,学习效果并不是特别好.由面向过程转向面向对象,不是特别清楚该怎么办,虽然写的是两个类,但实际上是 ...

  10. Linux基础入门--06

    简单的文本处理 实验介绍 这一节我们将介绍这几个命令:tr.col.join.paste 1.tr: -d:删除和set1匹配的字符,不是全词匹配也不是按字符顺序匹配 -s:除去指定的连续并重复的字符 ...