题目描述

维护一个向量集合,在线支持以下操作:
"A x y (|x|,|y| < =10^8)":加入向量(x,y);
" Q x y l r (|x|,|y| < =10^8,1 < =L < =R < =T,其中T为已经加入的向量个数)询问第L个到第R个加入的向量与向量(x,y)的点积的最大值。
    集合初始时为空


输入格式

输入的第一行包含整数N和字符s,分别表示操作数和数据类别;
    接下来N行,每行一个操作,格式如上所述。
    请注意s≠'E'时,输入中的所有整数都经过了加密。你可以使用以下程序
得到原始输入:
inline int decode (int x long long lastans) {
     return x ^ (lastans & Ox7fffffff);
}
function decode
begin
    其中x为程序读入的数,lastans为之前最后一次询问的答案。在第一次询问之前,lastans=0。

注:向量(x,y)和(z,W)的点积定义为xz+yw。


输出格式

对每个Q操作,输出一个整数表示答案。

提示

1 < =N < =4×10^5

新加数据一组..2015.315


  • 题解

    • 设当前向量为$(a,b)$集合中向量为$(x,y)$,设$z = ax+by$,有$y =  - \frac{a}{b} x + \frac{z}{b}$
    • 最优化$z$:
      • 当$b>0$即求过集合$S$中的某个点且斜率为$ - \frac{a}{b}$的直线$y$截距最大的为哪条,答案一定在上凸包上;
      • 同理$b<0$时求截距最小的为哪条;
      • $b==0$随便哪条查即可;
    • 如果维护了区间$[L,R]$的凸包就可以在里面三分;
    • 应该是可以用线段树套$splay$参照$bzoj2300$但是效率比较低;
    • 考虑直接用线段树,由于标号是顺序更新,所以一段区间的最后一个点被加入后再求区间的凸包,查询线段树查询+三分;
    • 实现上凸包的排序可以用归并,(然而并没有快TAT);
    • O(n \ log^2  \ n )
 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cmath>
#include<vector>
#include<stack>
#include<map>
#include<set>
#define Run(i,l,r) for(int i=l;i<=r;i++)
#define Don(i,l,r) for(int i=l;i>=r;i--)
#define ll long long
#define ld long double
#define mk make_pair
#define fir first
#define sec second
#define il inline
#define rg register
#define pb push_back
#define ls (k<<1)
#define rs (k<<1|1)
using namespace std;
const int N=;
const ll inf=1e18;
int n,cnt,sz[N<<],L[][N<<],R[][N<<];
ll ans=;
struct poi{
ll x,y;
poi(int _x=,int _y=):x(_x),y(_y){};
poi operator-(const poi&A)const{return poi(x-A.x,y-A.y);}
bool operator <(const poi&A)const{return x==A.x?y<A.y:x<A.x;}
}con[][N],Q,tmp[][N],p[N];
il char gc(){
static char*p1,*p2,s[];
if(p1==p2)p2=(p1=s)+fread(s,,,stdin);
return(p1==p2)?EOF:*p1++;
}
il int rd(){
int x=,f=; char c=gc();
while(c<''||c>''){if(c=='-')f=-;c=gc();}
while(c>=''&&c<='')x=(x<<)+(x<<)+c-'',c=gc();
return x*f;
}
il ll dot(poi A,poi B){return (ll)A.x*B.x+(ll)A.y*B.y;}
il ll crs(poi A,poi B){return (ll)A.x*B.y-(ll)A.y*B.x;}
il ll max(ll x,ll y){return x>y?x:y;}
il void build(int k,int d,int l,int r){
int mid=(l+r)>>,idl=l,idr=mid+,id=l,top,lst;
for(;idl<=mid||idr<=r;){
if(idr>r||(idl<=mid&&tmp[d+][idl]<tmp[d+][idr]))
tmp[d][id]=tmp[d+][idl],id++,idl++;
else
tmp[d][id]=tmp[d+][idr],id++,idr++;
}
con[d][L[][k]=top=l]=tmp[d][l];
for(rg int i=l+;i<=r;++i){
while(top>l&&crs(con[d][top]-con[d][top-],tmp[d][i]-con[d][top])<=)top--;
con[d][++top]=tmp[d][i];
}
R[][k]=L[][k]=lst=top;
for(rg int i=r-;i>=l;--i){
while(top>lst&&crs(con[d][top]-con[d][top-],tmp[d][i]-con[d][top])<=)top--;
if(i!=l)con[d][++top]=tmp[d][i];
}
R[][k]=top;
}
il void ask(int k,int d,int typ){
int l=L[typ][k],r=R[typ][k];
while(r-l>=){
int mid=(r-l)/,mid1=l+mid,mid2=r-mid;
if(dot(con[d][mid1],Q)<dot(con[d][mid2],Q))l=mid1;
else r=mid2;
}
for(rg int i=l;i<=r;++i)ans=max(ans,dot(con[d][i],Q));
ans=max(ans,dot(con[d][L[][k]],Q));
}
il void update(int k,int d,int l,int r,int x){
if(l==r){
sz[k]=;
L[][k]=L[][k]=R[][k]=R[][k]=x;
tmp[d][x]=con[d][x]=p[x];
}
else{
int mid=(l+r)>>;
if(x<=mid)update(ls,d+,l,mid,x);
else update(rs,d+,mid+,r,x);
sz[k]=sz[ls]+sz[rs];
if(sz[k]==r-l+)build(k,d,l,r);
}
}
il void query(int k,int d,int l,int r,int x,int y){
if(l==x&&r==y){ask(k,d,Q.y>);}
else{
int mid=(l+r)>>;
if(y<=mid)query(ls,d+,l,mid,x,y);
else if(x>mid)query(rs,d+,mid+,r,x,y);
else query(ls,d+,l,mid,x,mid),query(rs,d+,mid+,r,mid+,y);
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("bzoj3533.in","r",stdin);
freopen("bzoj3533.out","w",stdout);
#endif
char ch,tp;int x,y,l,r;
n=rd();tp=gc();
while(!isalpha(tp))tp=gc();
for(rg int i=;i<=n;++i){
ch=gc();while(!isalpha(ch))ch=gc();
if(ch=='A'){
x=rd();y=rd();
if(tp!='E')x^=ans,y^=ans;
p[++cnt]=poi(x,y);
update(,,,n,cnt);
}else{
x=rd();y=rd();l=rd();r=rd();
if(tp!='E')x^=ans,y^=ans,l^=ans,r^=ans;
Q=(poi){x,y};
ans = -inf;
query(,,,n,l,r);
printf("%lld\n",ans);
ans &= 0x7fffffff;
}
}
return ;
}//by tkys_Austin;

bzoj3533

bzoj3533【Sdoi2014】向量集的更多相关文章

  1. BZOJ3533 [Sdoi2014]向量集 【线段树 + 凸包 + 三分】

    题目链接 BZOJ3533 题解 我们设询问的向量为\((x_0,y_0)\),参与乘积的向量为\((x,y)\) 则有 \[ \begin{aligned} ans &= x_0x + y_ ...

  2. bzoj3533: [Sdoi2014]向量集

    Description 维护一个向量集合,在线支持以下操作:"A x y (|x|,|y| < =10^8)":加入向量(x,y);" Q x y l r (|x| ...

  3. BZOJ3533:[SDOI2014]向量集(线段树,三分,凸包)

    Description 维护一个向量集合,在线支持以下操作: "A x y (|x|,|y| < =10^8)":加入向量(x,y); " Q x y l r (| ...

  4. BZOJ 3533: [Sdoi2014]向量集( 线段树 + 三分 )

    答案一定是在凸壳上的(y>0上凸壳, y<0下凸壳). 线段树维护, 至多N次询问, 每次询问影响O(logN)数量级的线段树结点, 每个结点O(logN)暴力建凸壳, 然后O(logN) ...

  5. 【bzoj3533】[Sdoi2014]向量集 线段树+STL-vector维护凸包

    题目描述 维护一个向量集合,在线支持以下操作:"A x y (|x|,|y| < =10^8)":加入向量(x,y);"Q x y l r (|x|,|y| < ...

  6. bzoj 3533: [Sdoi2014]向量集 线段树维护凸包

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3533 题解: 首先我们把这些向量都平移到原点.这样我们就发现: 对于每次询问所得到的an ...

  7. bzoj 3533 [Sdoi2014]向量集 线段树+凸包+三分(+动态开数组) 好题

    题目大意 维护一个向量集合,在线支持以下操作: "A x y (|x|,|y| < =10^8)":加入向量(x,y); "Q x y l r (|x|,|y| & ...

  8. Sdoi2014 向量集

    题目描述 题解: 码力太差重构之后才$A……$ 首先求向量点积最大很容易想到凸包, 设已知$(x_0,y_0)$,求$(x,y)$满足$(x,y)*(x_0,y_0)>=(x',y')*(x_0 ...

  9. P3309 [SDOI2014]向量集

    传送门 达成成就:一人独霸三页提交 自己写的莫名其妙MLE死都不知道怎么回事,照着题解打一直RE一个点最后发现竟然是凸包上一个点求错了--四个半小时就一直用来调代码了-- 那么我们只要维护好这个凸壳, ...

  10. SDOI 2014 向量集

    [SDOI2014]向量集 题目描述 维护一个向量集合,在线支持以下操作: - "A x y (|x|,|y| < =10^8)":加入向量(x,y); - " Q ...

随机推荐

  1. Linux 做网关

    首先创建两张路由表,只需要添加到相应的文件中即可,Linux一共支持255个路由表,rt_tables文件中默认已经存在了三张路由表,分别是:   255  local   254  main   2 ...

  2. sprint2(第六天)

    昨天休息一天,今天继续做任务. 燃尽图:

  3. jQuery获取复选框选中的每一个值

    $('input[name="serviceMode"]:checked').each(function(){ this.attr('value') });

  4. Daily Scrum (2015/10/21)

    今天可以说是项目正式开始的第一天,由于大家缺乏做团队项目的经验,对TFS的使用都还不太熟悉,所以今天大家的主要工作是熟悉TFS的使用和对代码进行初步的理解.我们预计需要2-3天时间来理解透彻源代码.以 ...

  5. 20162328蔡文琛 week05 大二

    20162328 2017-2018-1 <程序设计与数据结构>第5周学习总结 教材学习内容总结 集合是收集元素并组织其他对象的对象. 集合中的元素一般由加入集合的次序或元素之间的某些固有 ...

  6. java 转载

    这几天忙于其他的事情,编程的习惯没有继续下去,偶然间看到了这篇文章,感觉收益颇丰,言归正传,下面即入主题 java基础知识小总结 在一个独立的原始程序里,只能有一个 public 类,却可以有许多 n ...

  7. roject ..\appcompat_v7 is missing. Needed by eclipse 转AS项目时遇到的问题

    参考的 http://www.cnblogs.com/vanezkw/p/4182917.html 去转换项目, 在第一步的时候就遇到问题 ,提示 missing 而那个又是兼容包 解决方法:项目右键 ...

  8. Daily target小队介绍(刘畅,陈杰,杨有存,唐祎琳,王晓哲,邵汝佳)

    一.团队介绍 1.团队构成: 2.队名: Daily target,我们的口号是Target your day! 3.团队项目描述: 我们计划写一个用于老师发布任务,学生接受任务的安卓app.教师安排 ...

  9. [2017BUAA软工]第3次个人作业

    软工第3次个人作业--案例分析 一. 调研,评测 1.软件的bug(至少两个,不少于40字) 测试软件: 必应词典移动端 测试平台:iPhone 6 bug1 对于翻译功能中的图片翻译功能,必应词典是 ...

  10. Load generator连接失败的解决办法!(转)

    环境:1.loadrunner control 一台物理机(win2008r2) 2.loadrunner agent 两台物理机(win2008r2) 问题:loadrunner control 连 ...