CDOJ 1401 谭爷的黑暗沙拉 数学
谭爷的黑暗沙拉
题目连接:
http://mozhu.today/#/problem/show/1401
Description
谭爷有\(n\)种不同种类的食材(水果&蔬菜),他想做出一份总重量为\(k\)的黑暗沙拉。
他想让机智的你告诉他,他能做多少种不同的黑暗沙拉!
说明:
1.可以重复选择食材,而且不需要选完全部的\(n\)种食材,但是最后总重量必须是\(k\)。
2.两份沙拉不同,当且仅当\(k\)重量食材的种类或配比不同。
3.每种食材只能选择非负整数的重量加入沙拉。
Input
一行,两个正整数\(n\),\(k\);
\(1<=n,k<=25\);
Output
一行,一个非负整数,方案数目。
(请用long long)
Sample Input
3 2
Sample Output
6
Hint
题意
题解:
设第i个食材选xi个,则问题转化成 x1+x2...+xn=k的非负整数的个数。
让yi=xi+1;则原方程变为:
y1+y2+...+yn=k+n的正整数解的个数。
想象k+n个数排成一排放
即C(k+n-1,n-1);等于求C(k+n-1,k);
代码
#include<bits/stdc++.h>
using namespace std;
long long dp[70][70];
int main()
{
int n,k;
scanf("%d%d",&n,&k);
dp[1][1]=1;
for(int i=1;i<=n+k+2;i++)
for(int j=1;j<=i;j++)
dp[i+1][j]+=dp[i][j],dp[i+1][j+1]+=dp[i][j];
cout<<dp[n+k][n]<<endl;
}
CDOJ 1401 谭爷的黑暗沙拉 数学的更多相关文章
- 【BZOJ2186】【SDoi2008】沙拉公主的困惑 数论
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...
- BZOJ-2186 沙拉公主的困惑 线性筛(筛筛筛)+线性推逆元
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][St ...
- 2186: [Sdoi2008]沙拉公主的困惑 - BZOJ
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...
- 【数学/扩展欧几里得/线性求逆元】[Sdoi2008]沙拉公主的困惑
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 【BZOJ2186】沙拉公主的困惑(数论)
[BZOJ2186]沙拉公主的困惑(数论) 题面 BZOJ 题解 考虑答案是啥 先假设\(n=m\) 现在求的就是\(\varphi(m!)\) 但是现在\(n!\)是\(m!\)的若干倍 我们知道 ...
- [SDOI 2008]沙拉公主的困惑
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...
- 【BZOJ2186】【SDOI2008】沙拉公主的困惑
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁 ...
随机推荐
- git clone直接提交用户名和密码
git使用用户名密码clone的方式: git clone http://username:password@remote 例如:我的用户名是abc@qq.com,密码是abc123456,git地址 ...
- servlet Filter过滤javascript
新建HttpServletRequestWrapper子类XssHttpServletRequestWrapper import javax.servlet.http.HttpServletReque ...
- 十二、springcloud之展示追踪数据 Sleuth+zipkin
一.Zipkin简介 Zipkin是Twitter的一个开源项目,它基于Google Dapper实现.我们可以使用它来收集各个服务器上请求链路的跟踪数据,并通过它提供的REST API接口来辅助我们 ...
- C++模板(Templates)
模板(template)是泛型编程的基础,"泛型"的含义就是没有不依赖具体的数据类型.模板的引入是为了创建一般性的类(模板类)或者函数(模板函数).典型的容器比如迭代器/算法等是泛 ...
- cvpr densnet论文
- 洛谷P3203弹飞绵羊
传送门啦 非常神奇的分块大法. 每块分 √N 个元素 , 预处理出来:对于每个点,记录两个量:一个是它要弹几次才能出它所在的这个块,另外一个是它弹出这个块后到哪个点. 查询操作:一块一块跳过去 单次复 ...
- HttpRunner接口自动化测试框架
简介 2018年python开发者大会上,了解到HttpRuuner开源自动化测试框架,采用YAML/JSON格式管理用例,能录制和转换生成用例功能,充分做到用例与测试代码分离,相比excel维护测试 ...
- java 内部类可以被覆盖吗
如果创建了一个内部类,然后继承其外围类并重新定义内部类时,"覆盖"内部类就好像是其外围类的一个方法,并不起作用, 这两个内部类是完全独立的两个实体,各自在自己的命名空间内 //: ...
- Centos之字符串搜索命令grep
grep [选项] 字符串 文件名 在文件当中匹配符合条件的字符串 选项: -i 忽略大小写 -v 排除指定字符串 [root@localhost ~]# grep "work" ...
- Azkaban(二)CentOS7.5安装Azkaban
1.软件介绍 Azkaban Web 服务器:azkaban-web-server-2.5.0.tar.gz Azkaban Excutor 执行服务器:azkaban-executor-server ...