Deep Learning综述[下]
Image understanding with deep convolutional networks
直到2012年ImageNet大赛之前,卷积神经网络一直被主流机器视觉和机器学习社区所遗弃。2012年ImageNet大赛上卷积神经网络用来识别1000种分类的近100万张图片,错误率比之前大赛的最好成绩降低了近一半。
基于卷积神经网络视觉系统的表现引起了大多数技术公司的注意,包括Google、Facebook、Microsoft、IBM、Yahoo!、Twitter 和Adobe等。
许多公司包括NVIDIA、Mobileye、Intel、Qualcomm 和Samsung正在开发卷积神经网络芯片,支持在智能手机、数码相机、机器人和自动驾驶上的实时视觉应用。
Distributed representations and language processing
与不使用分布式特征表示的传统学习算法相比,深度学习理论表明深度网络有两个巨大的优势。这两个优势来源于它的组成、依赖于具有合理结构的底层数据的分布特征。
- 学习分布式特征表示能通过训练过程中学到特征重新组合形成新的特征;
- 深度网络中特征表示组成的网络层是另一个指数级的优势;
Recurrent neural networks
RNN(递归神经网络)适用于序列化输入,如语音和语言。
RNNs一次处理一个输入序列元素,同时维护网络中隐单元中的“状态向量”,这个向量隐式地包含过去时刻序列元素的历史信息 。
由于递归神经网络的架构和训练方法的特点,RNNs在预测文本中的下一个字符或序列中的下一个单词这两个方面具有很好的表现,当然RNNs也可以应用于更加复杂的任务中。

RNNs一旦展开,可以把它当做一个所有层共享权值的前馈神经网络。虽然它们的目的是学习长期的依赖性,但理论上和经验上的证据都证明很难学习并长期保存信息。
为了解决这个难题,自然而然地想到要增大网络的存储量。于是提出采用了特殊隐单元的LSTM,能长期保存输入。
The future of deep learning
无监督学习对于重新点燃深度学习的热潮起到了促进的作用。
有监督学习比无监督学习更加成功。
但是在人类和动物的学习中无监督学习占据主导地位:我们通过观察能够发现世界的内在结构,而不是被告知每一个客观事物的名称。
计算机视觉结合ConvNets和RNNs,采用增强学习来决定走向。
将来,深度学习将会对自然语言理解产生重大影响。我们预测那些利用了RNNs的系统将会更好地理解句子或者整个文档,当它们选择性地学习了某时刻部分加入的策略。
最终,在人工智能方面取得的重大进步将来自那些结合了复杂推理表示学习的系统。
无监督学习;计算机视觉;自然语言处理;
Deep Learning综述[下]的更多相关文章
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(下)
转载:http://www.jianshu.com/p/b73b6953e849 该资源的github地址:Qix <Statistical foundations of machine lea ...
- Deep Learning综述[上]
Deep-Learning-Papers-Reading-Roadmap: [1] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Dee ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- Paper List ABOUT Deep Learning
Deep Learning 方向的部分 Paper ,自用.一 RNN 1 Recurrent neural network based language model RNN用在语言模型上的开山之作 ...
- Deep Learning方向的paper
转载 http://hi.baidu.com/chb_seaok/item/6307c0d0363170e73cc2cb65 个人阅读的Deep Learning方向的paper整理,分了几部分吧,但 ...
- #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...
- (转)深度学习(Deep Learning, DL)的相关资料总结
from:http://blog.sciencenet.cn/blog-830496-679604.html 深度学习(Deep Learning,DL)的相关资料总结 有人认为DL是人工智能的一场革 ...
- deep learning 经典网络模型之Alexnet、VGG、Googlenet、Resnet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...
随机推荐
- machine learning model(algorithm model) .vs. statistical model
https://www.analyticsvidhya.com/blog/2015/07/difference-machine-learning-statistical-modeling/ http: ...
- 上拉加载下拉刷新控件WaterRefreshLoadMoreView
上拉加载下拉刷新控件WaterRefreshLoadMoreView 效果: 源码: // // SRSlimeView // @author SR // Modified by JunHan on ...
- django使用LDAP验证
1.安装Python-LDAP(python_ldap-2.4.25-cp27-none-win_amd64.whl)pip install python_ldap-2.4.25-cp27-none- ...
- SharePoint 2007——内容管理之归档篇
如果需要使用这个功能普通的站点上(没有使用Record Center站点模板的站点),必须激活'Office SharePoint Server Publishing’ featue. 在使用Rec ...
- java面向切面编程总结-面向切面的本质
面向切面的本质:定义切面类并将切面类的功能织入到目标类中: 实现方式:将切面应用到目标对象从而创建一个新的代理对象的过程.替换: 使用注解@Aspect来定义一个切面,在切面中定义切入点(@Point ...
- BZOJ1022:[SHOI2008]小约翰的游戏John(博弈论)
Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...
- 1055. [HAOI2008]玩具取名【区间DP】
Description 某人有一套玩具,并想法给玩具命名.首先他选择WING四个字母中的任意一个字母作为玩具的基本名字.然后 他会根据自己的喜好,将名字中任意一个字母用“WING”中任意两个字母代替, ...
- javascript 中isPrototypeOf 、hasOwnProperty、constructor、prototype等用法
hasOwnProperty:是用来判断一个对象是否有你给出名称的属性或对象,此方法无法检查该对象的原型链中是否具有该属性,该属性必须是对象本身的一个成员. isPrototypeOf是用来判断要检查 ...
- 20155314 2016-2017-2 《Java程序设计》第1周学习总结
20155314 2016-2017-2 <Java程序设计>第1周学习总结 学习目标 了解Java基础知识(已完成) 了解JVM.JRE与JDK,并下载.安装.测试JDK(已完成) 了解 ...
- VMware虚拟机安装Mac OS X
安装mac系统学习网站来源:http://blog.csdn.net/hamber_bao/article/details/51335834 1.下载安装VMware workstation (1)首 ...