bzoj1043 [HAOI2008]下落的圆盘
Description
有n个圆盘从天而降,后面落下的可以盖住前面的。求最后形成的封闭区域的周长。看下面这副图, 所有的红色线条的总长度即为所求.
Input
第一行为1个整数n,N<=1000
接下来n行每行3个实数,ri,xi,yi,表示下落时第i个圆盘的半径和圆心坐标.
Output
最后的周长,保留三位小数
Sample Input
1 0 0
1 1 0
Sample Output
正解:计算几何。
枚举每一个圆,看它有多少没有被覆盖。
具体来说,就是再枚举与它相交且在它上面的圆,算出这个圆的覆盖区间,然后求出所有区间的总覆盖长度即可。
对于一个圆,可以求出圆心距的那条线的极角,然后用余弦定理求出这条直线与交点和圆心的直线的夹角,即可得夹角区间。
#include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define N (2005) using namespace std; const double pi=acos(-1.0); struct point{ double r,x,y; }p[N];
struct data{ double l,r; }st[N]; double ans;
int n,top; il int cmp(const data &a,const data &b){ return a.l<b.l; } il double dis(RG int i,RG int j){
return sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y));
} il int contain(RG int i,RG int j){ return p[j].r-p[i].r>=dis(i,j); } il double calc(RG int id){
for (RG int i=id+;i<=n;++i) if (contain(id,i)) return ;
for (RG int i=id+;i<=n;++i){
RG double d=dis(i,id); if (contain(i,id) || p[i].r+p[id].r<=d) continue;
RG double t=acos((d*d+p[id].r*p[id].r-p[i].r*p[i].r)/(*d*p[id].r));
RG double base=atan2(p[i].y-p[id].y,p[i].x-p[id].x);
st[++top]=(data){base-t,base+t};
if (st[top].l<) st[top].l+=*pi; if (st[top].r<) st[top].r+=*pi;
if (st[top].l>st[top].r) st[top+]=(data){,st[top].r},st[top++].r=*pi;
}
sort(st+,st+top+,cmp); RG double now=,res=;
for (RG int i=;i<=top;++i){
if (now<st[i].l) res+=st[i].l-now,now=st[i].r;
else now=max(now,st[i].r);
}
res+=*pi-now,top=; return res*p[id].r;
} int main(){
#ifndef ONLINE_JUDGE
freopen("circle.in","r",stdin);
freopen("circle.out","w",stdout);
#endif
cin>>n;
for (RG int i=;i<=n;++i) scanf("%lf%lf%lf",&p[i].r,&p[i].x,&p[i].y);
for (RG int i=;i<=n;++i) ans+=calc(i); printf("%0.3lf\n",ans); return ;
}
bzoj1043 [HAOI2008]下落的圆盘的更多相关文章
- bzoj1043[HAOI2008]下落的圆盘 计算几何
1043: [HAOI2008]下落的圆盘 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1598 Solved: 676[Submit][Stat ...
- 【计算几何】bzoj1043 [HAOI2008]下落的圆盘
n^2枚举圆盘,用两圆圆心的向量的极角+余弦定理求某个圆覆盖了该圆的哪一段区间(用弧度表示),最后求个区间并. 注意--精度--最好再累计区间的时候,把每个区间的长度减去EPS,防止最后覆盖的总区间超 ...
- BZOJ-1043 [HAOI2008]下落的圆盘
几何题... 先把所有圆储存起来,然后对于每个圆我们求得之后放下的圆挡住了的部分,求个并集,并把没被挡到的周长加进答案. #include <cstdlib> #include <c ...
- 【BZOJ1043】[HAOI2008]下落的圆盘 几何
[BZOJ1043][HAOI2008]下落的圆盘 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. ...
- 【bzoj1043】下落的圆盘
[bzoj1043]下落的圆盘 题意 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. \(1\leq n\leq 1000\ ...
- 【BZOJ1043】下落的圆盘 [计算几何]
下落的圆盘 Time Limit: 10 Sec Memory Limit: 162 MB[Submit][Status][Discuss] Description 有n个圆盘从天而降,后面落下的可 ...
- luogu P2510 [HAOI2008]下落的圆盘
LINK:下落的圆盘 计算几何.n个圆在平面上编号大的圆将编号小的圆覆盖求最后所有没有被覆盖的圆的边缘的总长度. 在做这道题之前有几个前置知识. 极坐标系:在平面内 由极点 极轴 和 极径组成的坐标系 ...
- BZOJ1043:[HAOI2008]下落的圆盘——题解(配图片)
http://www.lydsy.com/JudgeOnline/problem.php?id=1043 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周 ...
- 【bzoj1043】[HAOI2008]下落的圆盘 计算几何
题目描述 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. 输入 第一行为1个整数n,N<=1000接下来n行每行3个实 ...
随机推荐
- WiFi 干扰器,有时间可以去试试呦!
转自社区: 0X01 引言 想不想搞个WIFI干扰器?网上搜集了一下资料,发现用esp8266可以实现简单的干扰功能,包括断网.复制.欺骗等等.刚好手上有块Tpyboard V202(30元),也是e ...
- Oracle EBS 查询物料报错
- Vue2学习笔记:过渡效果css
过渡效果 Vue 提供了 transition 的封装组件,在下列情形中,可以给任何元素和组件添加 entering/leaving 过渡 <!DOCTYPE html> <html ...
- Eclipse4.6安装Tomcat插件时报错:Unable to read repository at http://tomcatplugin.sf.net/update/content.xml. Received fatal alert: handshake_failure
错误如下: Unable to read repository at http://tomcatplugin.sf.net/update/content.xml.Received fatal aler ...
- [翻译] iOSSharedViewTransition
iOSSharedViewTransition iOS 7 based transition library for View Controllers having a Common View 基于i ...
- Redis学习---Redis操作之其他操作
全局有效的其他操作 save 强制将内存/缓存中的key刷到硬盘上 ------------------------------------------------------------------ ...
- 铁乐学Python_day11_闭包函数
一.[函数名] 1)函数名本质上它也是一种变量,特殊的变量: (碰到同名其它变量,依照从上往下的代码执行赋值.) 单独打印函数名,输出的是它对应的内存地址: 例: def funcl(): print ...
- 剑指offer 08跳台阶
一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). java版本: public class Solution { public s ...
- 关于第一场HBCTF的Web题小分享,当作自身的笔记
昨天晚上6点开始的HBCTF,虽然是针对小白的,但有些题目确实不简单. 昨天女朋友又让我帮她装DOTA2(女票是一个不怎么用电脑的),然后又有一个小白问我题目,我也很热情的告诉她了,哎,真耗不起. 言 ...
- September 03rd 2017 Week 36th Sunday
What does it profit a man if he gains the whole world and loses his own soul? 失去灵魂,赢得世界又如何? It matte ...