Description

  有n个圆盘从天而降,后面落下的可以盖住前面的。求最后形成的封闭区域的周长。看下面这副图, 所有的红色线条的总长度即为所求.

Input

  第一行为1个整数n,N<=1000
接下来n行每行3个实数,ri,xi,yi,表示下落时第i个圆盘的半径和圆心坐标.

Output

  最后的周长,保留三位小数

Sample Input

2
1 0 0
1 1 0

Sample Output

10.472

正解:计算几何。

枚举每一个圆,看它有多少没有被覆盖。

具体来说,就是再枚举与它相交且在它上面的圆,算出这个圆的覆盖区间,然后求出所有区间的总覆盖长度即可。

对于一个圆,可以求出圆心距的那条线的极角,然后用余弦定理求出这条直线与交点和圆心的直线的夹角,即可得夹角区间。

 #include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define N (2005) using namespace std; const double pi=acos(-1.0); struct point{ double r,x,y; }p[N];
struct data{ double l,r; }st[N]; double ans;
int n,top; il int cmp(const data &a,const data &b){ return a.l<b.l; } il double dis(RG int i,RG int j){
return sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y));
} il int contain(RG int i,RG int j){ return p[j].r-p[i].r>=dis(i,j); } il double calc(RG int id){
for (RG int i=id+;i<=n;++i) if (contain(id,i)) return ;
for (RG int i=id+;i<=n;++i){
RG double d=dis(i,id); if (contain(i,id) || p[i].r+p[id].r<=d) continue;
RG double t=acos((d*d+p[id].r*p[id].r-p[i].r*p[i].r)/(*d*p[id].r));
RG double base=atan2(p[i].y-p[id].y,p[i].x-p[id].x);
st[++top]=(data){base-t,base+t};
if (st[top].l<) st[top].l+=*pi; if (st[top].r<) st[top].r+=*pi;
if (st[top].l>st[top].r) st[top+]=(data){,st[top].r},st[top++].r=*pi;
}
sort(st+,st+top+,cmp); RG double now=,res=;
for (RG int i=;i<=top;++i){
if (now<st[i].l) res+=st[i].l-now,now=st[i].r;
else now=max(now,st[i].r);
}
res+=*pi-now,top=; return res*p[id].r;
} int main(){
#ifndef ONLINE_JUDGE
freopen("circle.in","r",stdin);
freopen("circle.out","w",stdout);
#endif
cin>>n;
for (RG int i=;i<=n;++i) scanf("%lf%lf%lf",&p[i].r,&p[i].x,&p[i].y);
for (RG int i=;i<=n;++i) ans+=calc(i); printf("%0.3lf\n",ans); return ;
}

bzoj1043 [HAOI2008]下落的圆盘的更多相关文章

  1. bzoj1043[HAOI2008]下落的圆盘 计算几何

    1043: [HAOI2008]下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1598  Solved: 676[Submit][Stat ...

  2. 【计算几何】bzoj1043 [HAOI2008]下落的圆盘

    n^2枚举圆盘,用两圆圆心的向量的极角+余弦定理求某个圆覆盖了该圆的哪一段区间(用弧度表示),最后求个区间并. 注意--精度--最好再累计区间的时候,把每个区间的长度减去EPS,防止最后覆盖的总区间超 ...

  3. BZOJ-1043 [HAOI2008]下落的圆盘

    几何题... 先把所有圆储存起来,然后对于每个圆我们求得之后放下的圆挡住了的部分,求个并集,并把没被挡到的周长加进答案. #include <cstdlib> #include <c ...

  4. 【BZOJ1043】[HAOI2008]下落的圆盘 几何

    [BZOJ1043][HAOI2008]下落的圆盘 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求.  ...

  5. 【bzoj1043】下落的圆盘

    [bzoj1043]下落的圆盘 题意 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. \(1\leq n\leq 1000\ ...

  6. 【BZOJ1043】下落的圆盘 [计算几何]

    下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 有n个圆盘从天而降,后面落下的可 ...

  7. luogu P2510 [HAOI2008]下落的圆盘

    LINK:下落的圆盘 计算几何.n个圆在平面上编号大的圆将编号小的圆覆盖求最后所有没有被覆盖的圆的边缘的总长度. 在做这道题之前有几个前置知识. 极坐标系:在平面内 由极点 极轴 和 极径组成的坐标系 ...

  8. BZOJ1043:[HAOI2008]下落的圆盘——题解(配图片)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1043 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周 ...

  9. 【bzoj1043】[HAOI2008]下落的圆盘 计算几何

    题目描述 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. 输入 第一行为1个整数n,N<=1000接下来n行每行3个实 ...

随机推荐

  1. 如何让邮件营销平台成为EDM神器?

    任何一家做邮件营销的企业都希望自己的投入获得超乎想象的回报,出现打开率.点击率和伴随而来的成交量能够节节攀升的现象,这些数据我们当然可以通过监测各种平台的反馈而得到确切的报表.当然,作为邮件营销平台运 ...

  2. Mysql数据库字符集问题

    修改mysql数据库的默认编码方式 修改my.ini文件 加上 default-character-set=gb2312 设定数据库字符集 alter database da_name default ...

  3. oracle查看用户属于哪个表空间

    select username,default_tablespace from dba_users  where username='用户名';

  4. 02.Java入门

    Java 是SUN(Starfard University Network)公司在1995年开发的一门完全面向对象的,开源的高级编程语言. Java的发展历史 1995年诞生,1996年发布第一个版本 ...

  5. 【Java123】JDBC数据库连接池建立

    需求场景:多SQL任务多线程并行执行 解决方案:建立JDBC数据库连接池,将线程与连接一对一绑定 https://www.cnblogs.com/panxuejun/p/5920845.html ht ...

  6. Spring AOP源码分析(一)使用示例

    摘要: 本文结合<Spring源码深度解析>来分析Spring 5.0.6版本的源代码.若有描述错误之处,欢迎指正. 我们知道,使用面向对象编程(OOP)有一些弊端,当需要为多个不具有继承 ...

  7. 1549: Navigition Problem (几何计算+模拟 细节较多)

    1549: Navigition Problem Submit Page    Summary    Time Limit: 1 Sec     Memory Limit: 256 Mb     Su ...

  8. KVM虚拟机IO处理过程(二) ----QEMU/KVM I/O 处理过程

    接着KVM虚拟机IO处理过程中Guest Vm IO处理过程(http://blog.csdn.net/dashulu/article/details/16820281),本篇文章主要描述IO从gue ...

  9. Nginx与浏览器缓存

    Nginx与浏览器缓存 一.浏览器对缓存的处理:Internet选项 ★ 控制请求服务器策略:是忽略资源的缓存策略的情况下额外强制请求服务器的意思.  ★ 检查存储的页面较新版本 1.每次访问网页时  ...

  10. vue请求本地自己编写的json文件。

    1.第一步,这是目录结构 2.接下来是build/webpack.dev.conf.js文件需要配置的内容 代码: //vue配置请求本地json数据const express = require(' ...