Description

  有n个圆盘从天而降,后面落下的可以盖住前面的。求最后形成的封闭区域的周长。看下面这副图, 所有的红色线条的总长度即为所求.

Input

  第一行为1个整数n,N<=1000
接下来n行每行3个实数,ri,xi,yi,表示下落时第i个圆盘的半径和圆心坐标.

Output

  最后的周长,保留三位小数

Sample Input

2
1 0 0
1 1 0

Sample Output

10.472

正解:计算几何。

枚举每一个圆,看它有多少没有被覆盖。

具体来说,就是再枚举与它相交且在它上面的圆,算出这个圆的覆盖区间,然后求出所有区间的总覆盖长度即可。

对于一个圆,可以求出圆心距的那条线的极角,然后用余弦定理求出这条直线与交点和圆心的直线的夹角,即可得夹角区间。

 #include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define N (2005) using namespace std; const double pi=acos(-1.0); struct point{ double r,x,y; }p[N];
struct data{ double l,r; }st[N]; double ans;
int n,top; il int cmp(const data &a,const data &b){ return a.l<b.l; } il double dis(RG int i,RG int j){
return sqrt((p[i].x-p[j].x)*(p[i].x-p[j].x)+(p[i].y-p[j].y)*(p[i].y-p[j].y));
} il int contain(RG int i,RG int j){ return p[j].r-p[i].r>=dis(i,j); } il double calc(RG int id){
for (RG int i=id+;i<=n;++i) if (contain(id,i)) return ;
for (RG int i=id+;i<=n;++i){
RG double d=dis(i,id); if (contain(i,id) || p[i].r+p[id].r<=d) continue;
RG double t=acos((d*d+p[id].r*p[id].r-p[i].r*p[i].r)/(*d*p[id].r));
RG double base=atan2(p[i].y-p[id].y,p[i].x-p[id].x);
st[++top]=(data){base-t,base+t};
if (st[top].l<) st[top].l+=*pi; if (st[top].r<) st[top].r+=*pi;
if (st[top].l>st[top].r) st[top+]=(data){,st[top].r},st[top++].r=*pi;
}
sort(st+,st+top+,cmp); RG double now=,res=;
for (RG int i=;i<=top;++i){
if (now<st[i].l) res+=st[i].l-now,now=st[i].r;
else now=max(now,st[i].r);
}
res+=*pi-now,top=; return res*p[id].r;
} int main(){
#ifndef ONLINE_JUDGE
freopen("circle.in","r",stdin);
freopen("circle.out","w",stdout);
#endif
cin>>n;
for (RG int i=;i<=n;++i) scanf("%lf%lf%lf",&p[i].r,&p[i].x,&p[i].y);
for (RG int i=;i<=n;++i) ans+=calc(i); printf("%0.3lf\n",ans); return ;
}

bzoj1043 [HAOI2008]下落的圆盘的更多相关文章

  1. bzoj1043[HAOI2008]下落的圆盘 计算几何

    1043: [HAOI2008]下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1598  Solved: 676[Submit][Stat ...

  2. 【计算几何】bzoj1043 [HAOI2008]下落的圆盘

    n^2枚举圆盘,用两圆圆心的向量的极角+余弦定理求某个圆覆盖了该圆的哪一段区间(用弧度表示),最后求个区间并. 注意--精度--最好再累计区间的时候,把每个区间的长度减去EPS,防止最后覆盖的总区间超 ...

  3. BZOJ-1043 [HAOI2008]下落的圆盘

    几何题... 先把所有圆储存起来,然后对于每个圆我们求得之后放下的圆挡住了的部分,求个并集,并把没被挡到的周长加进答案. #include <cstdlib> #include <c ...

  4. 【BZOJ1043】[HAOI2008]下落的圆盘 几何

    [BZOJ1043][HAOI2008]下落的圆盘 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求.  ...

  5. 【bzoj1043】下落的圆盘

    [bzoj1043]下落的圆盘 题意 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. \(1\leq n\leq 1000\ ...

  6. 【BZOJ1043】下落的圆盘 [计算几何]

    下落的圆盘 Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Description 有n个圆盘从天而降,后面落下的可 ...

  7. luogu P2510 [HAOI2008]下落的圆盘

    LINK:下落的圆盘 计算几何.n个圆在平面上编号大的圆将编号小的圆覆盖求最后所有没有被覆盖的圆的边缘的总长度. 在做这道题之前有几个前置知识. 极坐标系:在平面内 由极点 极轴 和 极径组成的坐标系 ...

  8. BZOJ1043:[HAOI2008]下落的圆盘——题解(配图片)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1043 Description 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周 ...

  9. 【bzoj1043】[HAOI2008]下落的圆盘 计算几何

    题目描述 有n个圆盘从天而降,后面落下的可以盖住前面的.求最后形成的封闭区域的周长.看下面这副图, 所有的红色线条的总长度即为所求. 输入 第一行为1个整数n,N<=1000接下来n行每行3个实 ...

随机推荐

  1. hibernate的延迟加载和抓取策略

    一,延迟加载 1.实体类延迟加载 通过代理机制完成,由javassist类库实现运行时代理,修改实体类的字节码实现了运行时代理     <class lazy="true|false& ...

  2. Mysql ibdata1简述

    What is stored in ibdata1? 当启用innodb_file_per_table时,表存储在它们自己的表空间中,但共享表空间仍用于存储其他InnoDB的内部数据: 数据字典也就是 ...

  3. apache2.2+php5.3+mysql5.5+Zend Guard Loader集成包

    由前一篇文章 http://www.cnblogs.com/darktime/p/3407980.html 我就配置了一个环境包,免安装的,只需要运行一个.bat的文件文件就算安装成功了 如果你需要用 ...

  4. C#实体类对象修改日志记录

    C#实体类对象修改日志记录 类型验证帮助类 public static class TypeExtensions { public static bool InheritsFrom(this Type ...

  5. C#中关于增强类功能的几种方式

    C#中关于增强类功能的几种方式 本文主要讲解如何利用C#语言自身的特性来对一个类的功能进行丰富与增强,便于拓展现有项目的一些功能. 拓展方法 扩展方法被定义为静态方法,通过实例方法语法进行调用.方法的 ...

  6. java:通过Calendar类正确计算两日期之间的间隔

    在开发Android应用时偶然需要用到一个提示用户已用天数的功能,从实现上来看无非就是持久化存入用户第一次使用应用的时间firstTime(通过SharedPreferences .xml.sqlit ...

  7. C# 队列(Queue) 和堆栈(Stack)

    队列 (Queue)                                                                                          ...

  8. 由于使用JDBC ResultSet的滚动功能而导致的内存溢出

    前天一去公司,老大说,服务器全挂了! 最后排查了半天,结论是内存溢出! 在WAS的DUMP日志中,看得我头晕眼花,终于找到了罪魁祸首,原来是有同事写代码的时候使用了可滚动的结果集导致内存溢出. 什么是 ...

  9. [翻译] DCPathButton

    DCPathButton https://github.com/Tangdixi/DCPathButton DCPathButton 2.0 is a menu button for iOS. Des ...

  10. Office 365实现单点登录系列(5)—配置单点登录

    这是单点登录系列的最后一篇文章,前面4篇文章其实都是在为这篇文章的内容做准备,我把这四篇文章的链接放在下面,如果大家有需要,可以参考我以下的链接: Office 365实现单点登录系列(1)—域环境搭 ...