opengl

opengl是一个由Khronos组织制定并维护的规范(Specification) 。是一系列的图形软件编程接口,和gdi类似。opengl有很多封装的库最有名的GLFW库。接下来很多东西以GLFW 为例子来说明一些api的使用问题,但这并不影响opengl本身的逻辑表述。

状态机

OpenGL自身是一个巨大的状态机(State Machine):一系列的变量描述OpenGL此刻应当如何运行。OpenGL的状态通常被称为OpenGL上下文(Context)。我们通常使用如下途径去更改OpenGL状态:设置选项,操作缓冲。最后,我们使用当前OpenGL上下文来渲染。

假设当我们想告诉OpenGL去画线段而不是三角形的时候,我们通过改变一些上下文变量来改变OpenGL状态,从而告诉OpenGL如何去绘图。一旦我们改变了OpenGL的状态为绘制线段,下一个绘制命令就会画出线段而不是三角形。

当使用OpenGL的时候,我们会遇到一些状态设置函数(State-changing Function),这类函数将会改变上下文。以及状态使用函数(State-using Function),这类函数会根据当前OpenGL的状态执行一些操作。只要你记住OpenGL本质上是个大状态机,就能更容易理解它的大部分特性。

对象

在OpenGL中一个对象是指一些选项的集合,它代表OpenGL状态的一个子集 。

当我们使用一个对象时,通常看起来像如下一样:

// OpenGL的状态
struct OpenGL_Context {
...
object* object_Window_Target;
...
};
// 创建对象
unsigned int objectId = 0;
glGenObject(1, &objectId);
// 绑定对象至上下文
glBindObject(GL_WINDOW_TARGET, objectId);
// 设置当前绑定到 GL_WINDOW_TARGET 的对象的一些选项
glSetObjectOption(GL_WINDOW_TARGET, GL_OPTION_WINDOW_WIDTH, 800);
glSetObjectOption(GL_WINDOW_TARGET, GL_OPTION_WINDOW_HEIGHT, 600);
// 将上下文对象设回默认
glBindObject(GL_WINDOW_TARGET, 0);

这一段代码展现了使用OpenGL时常见的工作流。我们首先创建一个对象,然后用一个id保存它的引用(实际数据被储存在后台)。然后我们将对象绑定至上下文的目标位置(例子中窗口对象目标的位置被定义成GL_WINDOW_TARGET)。接下来我们设置窗口的选项。最后我们将目标位置的对象id设回0,解绑这个对象。设置的选项将被保存在objectId所引用的对象中,一旦我们重新绑定这个对象到GL_WINDOW_TARGET位置,这些选项就会重新生效。

程序结构

我们要开始一个图形渲染程序,首要是要选择gl库,因为要使用api.然后创建窗口、设置视口、设置窗口大小调整后的回调在回调中要处理视口、接着是渲染循环、还要处理处输入等。

实例化配置glfw
int main()
{
glfwInit(); //初始化glfw
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3); //配置glfw
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
//glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); return 0;
}

首先,我们在main函数中调用glfwInit函数来初始化GLFW,然后我们可以使用glfwWindowHint函数来配置GLFW。glfwWindowHint函数的第一个参数代表选项的名称,我们可以从很多以GLFW_开头的枚举值中选择;第二个参数接受一个整形,用来设置这个选项的值

创建窗口

接下来我们创建一个窗口对象,这个窗口对象存放了所有和窗口相关的数据,而且会被GLFW的其他函数频繁地用到。

GLFWwindow* window = glfwCreateWindow(800, 600, "LearnOpenGL", NULL, NULL);
if (window == NULL)
{
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);

glfwCreateWindow函数需要窗口的宽和高作为它的前两个参数。第三个参数表示这个窗口的名称(标题),。这个函数将会返回一个GLFWwindow对象,创建完窗口我们就可以通知GLFW将我们窗口的上下文设置为当前线程的主上下文了。

视口

必须告诉OpenGL渲染窗口的尺寸大小,即视口(Viewport),这样OpenGL才只能知道怎样根据窗口大小显示数据和坐标。我们可以通过调用glViewport函数来设置窗口的维度(Dimension):

glViewport(0, 0, 800, 600);

glViewport函数前两个参数控制窗口左下角的位置。第三个和第四个参数控制渲染窗口的宽度和高度(像素)。

OpenGL幕后使用glViewport中定义的位置和宽高进行2D坐标的转换,将OpenGL中的位置坐标转换为你的屏幕坐标,处理过的OpenGL坐标范围只为-1到1。

当窗口大小发生变换的时候需要设置视口的大小:

glfwSetFramebufferSizeCallback(window, [](GLFWwindow* window, int width, int height){
glViewport(0, 0, width, height);
});
处理输入

我们同样也希望能够在GLFW中实现一些输入控制,这可以通过使用GLFW的几个输入函数来完成。我们将会使用GLFW的glfwGetKey函数,它需要一个窗口以及一个按键作为输入。这个函数将会返回这个按键是否正在被按下。我们将创建一个processInput函数来让所有的输入代码保持整洁。

void processInput(GLFWwindow *window)
{
if(glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
}
渲染循环

需要在程序中添加一个while循环,我们可以把它称之为渲染循环(Render Loop),它能在我们让GLFW退出前一直保持运行。下面几行的代码就实现了一个简单的渲染循环:

// 渲染循环
while(!glfwWindowShouldClose(window))
{
// 输入
processInput(window); // 渲染指令
... glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT); // 检查并调用事件,交换缓冲
glfwPollEvents();
glfwSwapBuffers(window);
}
glfwTerminate();
  • glfwWindowShouldClose函数在我们每次循环的开始前检查一次GLFW是否被要求退出,如果是的话该函数返回true然后渲染循环便结束了,之后为我们就可以关闭应用程序了。
  • glfwPollEvents函数检查有没有触发什么事件(比如键盘输入、鼠标移动等)、更新窗口状态,并调用对应的回调函数(可以通过回调方法手动设置)。
  • glfwSwapBuffers函数会交换颜色缓冲(它是一个储存着GLFW窗口每一个像素颜色值的大缓冲),它在这一迭代中被用来绘制,并且将会作为输出显示在屏幕上。
  • glClear函数来清空屏幕的颜色缓冲,它接受一个缓冲位(Buffer Bit)来指定要清空的缓冲,可能的缓冲位有GL_COLOR_BUFFER_BIT,GL_DEPTH_BUFFER_BIT和GL_STENCIL_BUFFER_BIT。
  • 调用了glClearColor来设置清空屏幕所用的颜色
  • glClearColor函数是一个状态设置函数,而glClear函数则是一个状态使用的函数,它使用了当前的状态来获取应该清除为的颜色。
  • glfwTerminate(); 释放所有申请的资源
双缓冲(Double Buffer)

应用程序使用单缓冲绘图时可能会存在图像闪烁的问题。 这是因为生成的图像不是一下子被绘制出来的,而是按照从左到右,由上而下逐像素地绘制而成的。最终图像不是在瞬间显示给用户,而是通过一步一步生成的,这会导致渲染的结果很不真实。为了规避这些问题,我们应用双缓冲渲染窗口应用程序。缓冲保存着最终输出的图像,它会在屏幕上显示;而所有的的渲染指令都会在缓冲上绘制。当所有的渲染指令执行完毕后,我们交换(Swap)前缓冲和后缓冲,这样图像就立即呈显出来,之前提到的不真实感就消除了。

最终的程序结构

#include <glad/glad.h>
#include <GLFW/glfw3.h> #include <iostream> void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void processInput(GLFWwindow *window); // settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600; int main()
{
//glfw初始化和设置
glfwInit();
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE); //创建窗口配置窗口
GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
if (window == NULL)
{
glfwTerminate();
return -1;
}
//设置问当前窗口上下文
glfwMakeContextCurrent(window);
//设置窗口大小改变的回调 处理视口变化
glfwSetFramebufferSizeCallback(window, framebuffer_size_callback); // render loop
while (!glfwWindowShouldClose(window))
{
// input
processInput(window); // render
glClearColor(0.2f, 0.3f, 0.3f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT); // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
// -------------------------------------------------------------------------------
glfwSwapBuffers(window);
glfwPollEvents();
} // glfw: terminate, clearing all previously allocated GLFW resources.
glfwTerminate();
return 0;
} void processInput(GLFWwindow *window)
{
if(glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
glfwSetWindowShouldClose(window, true);
} void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
glViewport(0, 0, width, height);
}

opengl基础的更多相关文章

  1. OpenGL基础图形编程

    一.OpenGL与3D图形世界1.1.OpenGL使人们进入三维图形世界 我们生活在一个充满三维物体的三维世界中,为了使计算机能精确地再现这些物体,我们必须能在三维空间描绘这些物体.我们又生活在一个充 ...

  2. opengl基础学习专题 (二) 点直线和多边形

    题外话 随着学习的增长,越来越觉得自己很水.关于上一篇博文中推荐用一个 学习opengl的 基于VS2015的 simplec框架.存在 一些问题. 1.这个框架基于VS 的Debug 模式下,没有考 ...

  3. 【转】OpenGL基础图形编程(一)

    原文:http://blog.chinaunix.net/uid-20638550-id-1909183.html  分类: 一.OpenGL与3D图形世界 1.1.OpenGL使人们进入三维图形世界 ...

  4. MFC+OpenGL基础绘制<转>

    转载地址:https://blog.csdn.net/u013232740/article/details/47904115 ------------------------------------- ...

  5. opengl基础学习专题 (一 )编程环境搭建

    题外话: 第一次在博客园上同大家分享博文.水的的地方,错别字的地方.环境交流.批评.知道了马上改. 以前在百度空间中写技术分享博文,后来百度啥也没说就把整个空间封了.当时感觉 还是有点寒心.只想黑一下 ...

  6. 【转】OpenGL基础图形编程(二)

    原文:http://blog.chinaunix.net/uid-20638550-id-1909184.html  分类: 十一.位图与图像 11.1.位图 11.1.1 位图(Bitmap)与字符 ...

  7. Chapter 1. OpenGL基础回顾 - Review of OpenGL Basics

    译自<OpenGL® Shading Language, Second Edition> 本章主要回顾OpenGL应用编程接口,为后续章节中的材质铺垫基础.这并不是详尽的回顾.如果你已经 ...

  8. openGl 基础

    最近由于手机项目中需要用到OpenGL ES的知识,所以这段时间正在研究OpenGL的相关知识.因为OpenGL ES是OpenGL的剪裁版本,所以我直接从OpenGL入手,然后再去看OpenGL E ...

  9. OpenGL基础汇总

    OpenGL(应用程序接口 即API)——用于访问图形硬件的可编程特性 1. 各种矩阵: 世界矩阵(World Matrix):世界矩阵确定一个统一的世界坐标,用于组织独立的物体形成一个完整的场景; ...

  10. [原]OpenGL基础教程(五)缓冲区数据更新方式

    1.glBufferSubData 适用于相同数据类型 void SetPositionY(float y){    vector<Vector3<float>>::itera ...

随机推荐

  1. PHP设计模式系列 - 工厂模式

    工厂模式 提供获取某个对象实例的一个接口,同时使调用代码避免确定实例化基类的步骤. 工厂模式 实际上就是建立一个统一的类实例化的函数接口.统一调用,统一控制. 工厂模式是php项目开发中,最常用的设计 ...

  2. Python简单实现多级菜单

    # -*- coding: utf-8 -*- # @Time : 2018-06-01 13:40 # @Author : 超人 # @Email : huxiaojiu111@gmail.com ...

  3. debian 7上安装svn

    1.在终端中直接输入  sudo apt-get install subversion,选择安装即可 2.查看版本命令 svnserve --version(更多命令直接键入svnserve --he ...

  4. java内存分配策略

    对象的内存分配,从大方向将就是在堆上分配,对象主要分配在新生代的Eden区上,如果启动了本地线程分配缓存,将按线程优先在TLAB上分配. 1. 对象优先在Eden区分配:大多数情况下,对象在新生代Ed ...

  5. python第十一课——转换结构

    3.转换函数:int():float():str():list():tuple():set():dict():bool(): 案例: #演示各个转换函数的使用: 数值型-->字符型使用:str( ...

  6. 【洛谷】【堆+贪心】P1484 种树

    [题目描述:] cyrcyr今天在种树,他在一条直线上挖了n个坑.这n个坑都可以种树,但为了保证每一棵树都有充足的养料,cyrcyr不会在相邻的两个坑中种树.而且由于cyrcyr的树种不够,他至多会种 ...

  7. Day10 MVC

    经典三层 表述层(表示层):  前台交互,调用后台   web 业务逻辑层:   处理业务              service 数据持久层:   与数据库之间进行交互  dao 面向对象原则 面 ...

  8. tuple元组详解

    这次要讲的内容是:c++11中的tuple(元组).tuple看似简单,其实它是简约而不简单,可以说它是c++11中一个既简单又复杂的东东,关于它简单的一面是它很容易使用,复杂的一面是它内部隐藏了太多 ...

  9. leetcode589. N-ary Tree Preorder Traversal

    python 版: class Solution(object): def preorder(self, root): ret, q = [], root and [root] while q: no ...

  10. P1880 [NOI1995]石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...