【转】numpy中 meshgrid 和 mgrid 的区别和使用
转自:https://www.cnblogs.com/shenxiaolin/p/8854197.html
一、meshgrid函数
meshgrid函数通常使用在数据的矢量化上。
它适用于生成网格型数据,可以接受两个一维数组生成两个二维矩阵,对应两个数组中所有的(x,y)对。
示例展示:
由上面的示例展示可以看出,meshgrid的作用是:
根据传入的两个一维数组参数生成两个数组元素的列表。
如果第一个参数是xarray,维度是xdimesion,
第二个参数是yarray,维度是ydimesion。
那么生成的第一个二维数组是以xarray为行,共ydimesion行的向量;
而第二个二维数组是以yarray的转置为列,共xdimesion列的向量。
二、 mgrid函数
用法:返回多维结构,常见的如2D图形,3D图形。对比np.meshgrid,在处理大数据时速度更快,且能处理多维(np.meshgrid只能处理2维)
ret = np.mgrid[ 第1维,第2维 ,第3维 , …]
返回多值,以多个矩阵的形式返回,
第1返回值为第1维数据在最终结构中的分布,
第2返回值为第2维数据在最终结构中的分布,以此类推。(分布以矩阵形式呈现)
例如np.mgrid[X , Y]
样本(i,j)的坐标为 (X[i,j] ,Y[i,j]),X代表第1维,Y代表第2维,在此例中分别为横纵坐标。
例如1D结构(array),如下:

In [2]: import numpy as np In [3]: pp=np.mgrid[-5:5:5j] In [4]: pp
Out[4]: array([-5. , -2.5, 0. , 2.5, 5. ])

例如2D结构 (2D矩阵),如下:

>>> pp = np.mgrid[-1:1:2j,-2:2:3j]
>>> x , y = pp
>>> x
array([[-1., -1., -1.],
[ 1., 1., 1.]])
>>> y
array([[-2., 0., 2.],
[-2., 0., 2.]])

例如3D结构 (3D立方体),如下:

>>> pp = np.mgrid[-1:1:2j,-2:2:3j,-3:3:5j]
>>> print pp
[[[[-1. -1. -1. -1. -1. ]
[-1. -1. -1. -1. -1. ]
[-1. -1. -1. -1. -1. ]] [[ 1. 1. 1. 1. 1. ]
[ 1. 1. 1. 1. 1. ]
[ 1. 1. 1. 1. 1. ]]] [[[-2. -2. -2. -2. -2. ]
[ 0. 0. 0. 0. 0. ]
[ 2. 2. 2. 2. 2. ]] [[-2. -2. -2. -2. -2. ]
[ 0. 0. 0. 0. 0. ]
[ 2. 2. 2. 2. 2. ]]] [[[-3. -1.5 0. 1.5 3. ]
[-3. -1.5 0. 1.5 3. ]
[-3. -1.5 0. 1.5 3. ]] [[-3. -1.5 0. 1.5 3. ]
[-3. -1.5 0. 1.5 3. ]
[-3. -1.5 0. 1.5 3. ]]]]

三、meshgrid 和 mgrid 的区别
mgrid[[1:3:3j, 4:5:2j]]
3j:3个点
- 步长为复数表示点数,左闭右闭
- 步长为实数表示间隔,左闭右开
【转】numpy中 meshgrid 和 mgrid 的区别和使用的更多相关文章
- Python的 numpy中 meshgrid 和 mgrid 的区别和使用
一.meshgrid函数 meshgrid函数通常使用在数据的矢量化上. 它适用于生成网格型数据,可以接受两个一维数组生成两个二维矩阵,对应两个数组中所有的(x,y)对. 示例展示: 由上面的示例展示 ...
- Numpy中Meshgrid函数介绍及2种应用场景
近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法.但总觉得印象不深刻,不是太了解meshgrid的应用场景.所以,本文将进一步介绍Numpy中meshgrid的用法 ...
- Numpy中矩阵和数组的区别
矩阵(Matrix)和数组(Array)的区别主要有以下两点: 矩阵只能为2维的,而数组可以是任意维度的. 矩阵和数组在数学运算上会有不同的结构. 代码展示 1.矩阵的创建 采用mat函数创建矩阵 c ...
- Numpy中matrix()和array()的区别
matrix() 和 array() 的区别,主要从以下方面说起: 1. 矩阵生成方式不同 import numpy as np a1 = np.array([[1, 2], [3, 4]]) b1 ...
- numpy中关于*和dot的区别
1.numpy乘法运算中"*"是数组元素逐个计算 >>> import numpy as np >>> a = np.array([[2,3], ...
- numpy中array和asarray的区别
array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 举例说明: imp ...
- 【转】numpy中mean和average的区别
转自:https://blog.csdn.net/Muzi_Water/article/details/85104941 mean和average都是计算均值的函数,在不指定权重的时候average和 ...
- numpy中array和matrix的区别
两者相似但执行相同的运算可能得到不同的结果 显然,array只能通过dot()实现"矩阵乘法",array的"*"运算实现的是两个纬度相同的"矩阵&q ...
- numpy 中array 和ndrray的区别联系
numpy.array() 标明array只是一个方法 ndarray 是类名,是一个实例. a=numpy.array(b) #这是把变量b转换为数组a,这里array()是个方法,a的类型 ...
随机推荐
- ASP.NET MVC中你必须知道的13个扩展点
ScottGu在其最新的博文中推荐了Simone Chiaretta的文章13 ASP.NET MVC extensibility points you have to know,该文章为我 ...
- .NET4.5新特性async和await修饰符实现异步编程
开篇 每一个版本的.net都会引入一些新的特性,这些特性方便开发人员能够快速实现一些功能.虽然.net版本一直在更新,但是新版本对旧版本的程序都是兼容的,在这一点上微软做的还是非常好的.每次学一个新内 ...
- 移除button点击时的黑边
input[type=submit], input[type=reset], input[type=button]{ outline:none; filter: chroma(color=#00000 ...
- iphone设置fiddler代理测试
iPhone上配置fiddler为代理方法: 打开IPhone, 找到你的网络连接,打开HTTP代理,输入Fiddler所在机器的IP地址(比如:192.168.1.104) 以及Fiddler的端口 ...
- input文字垂直居中和按钮对齐问题,兼容IE8
1.盒子模型问题:请CSS重置 2.按钮不对齐:请浮动或者vertical-align:middle;然后计算宽高,使其对齐 : 3.IE8文本不居中:line-height属性 注意:IE8 ...
- ecmascript 6 的arguments转数组的代码
- flutter控件之CheckBox
import 'package:flutter/material.dart'; class LearnCheckBox extends StatefulWidget{ @override State& ...
- MyBatis -01- 初识 MyBatis + MyBatis 环境搭建
MyBatis -01- 初识 MyBatis + MyBatis 环境搭建 MyBatis 本是 apache 的一个开源项目 iBatis(iBATIS = "internet" ...
- hibernate中指定非外键进行关联
/** * 上级资源 */ @ManyToOne(fetch = FetchType.LAZY) @JoinColumn(name = "PARENT_ID", reference ...
- leetCode题解之First Missing Positive
1.问题描述 2.题解思路 本题的思路是对于数组中每个正的元素,应该将其放到数组中对应的位置,比如元素1 ,应该放在数组的第一个位置.以此类推,最后检查数组中元素值和下标不匹配的情况. 3.代码 in ...