大数据的时代, 到处张嘴闭嘴都是Hadoop, MapReduce, 不跟上时代怎么行? 可是对一个hadoop的新手, 写一个属于自己的MapReduce程序还是小有点难度的, 需要建立一个maven项目, 还要搞清楚各种库的依赖, 再加上编译运行, 基本上头大两圈了吧。 这也使得很多只是想简单了解一下MapReduce的人望而却步。

本文会教你如何用最快最简单的方法编写和运行一个属于自己的MapReduce程序, let's go!

首先有两个前提:

1. 有一个已经可以运行的hadoop 集群(也可以是伪分布系统), 上面的hdfs和mapreduce工作正常 (这个真的是最基本的了, 不再累述, 不会的请参考 http://hadoop.apache.org/docs/current/)

2. 集群上安装了JDK (编译运行时会用到)

正式开始

1. 首先登入hadoop 集群里面的一个节点, 创建一个java源文件, 偷懒起见, 基本盗用官方的word count (因为本文的目的是教会你如何快编写和运行一个MapReduce程序, 而不是如何写好一个功能齐全的MapReduce程序)

内容如下:

import java.io.IOException;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser; public class myword { public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1);
private Text word = new Text(); public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
} public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(myword.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}

与官方版本相比, 主要做了两处修改

1) 为了简单起见,去掉了开头的 package org.apache.hadoop.examples;

2) 将类名从 WordCount 改为 myword, 以体现是我们自己的工作成果 :)

2.  拿到hadoop 运行的class path, 主要为编译所用

运行命令

hadoop classpath

保存打出的结果,本文用的hadoop 版本是Pivotal 公司的Pivotal hadoop, 例子:

/etc/gphd/hadoop/conf:/usr/lib/gphd/hadoop/lib/*:/usr/lib/gphd/hadoop/.//*:/usr/lib/gphd/hadoop-hdfs/./:/usr/lib/gphd/hadoop-hdfs/lib/*:/usr/lib/gphd/hadoop-hdfs/.//*:/usr/lib/gphd/hadoop-yarn/lib/*:/usr/lib/gphd/hadoop-yarn/.//*:/usr/lib/gphd/hadoop-mapreduce/lib/*:/usr/lib/gphd/hadoop-mapreduce/.//*::/etc/gphd/pxf/conf::/usr/lib/gphd/pxf/pxf-core.jar:/usr/lib/gphd/pxf/pxf-api.jar:/usr/lib/gphd/publicstage:/usr/lib/gphd/gfxd/lib/gemfirexd.jar::/usr/lib/gphd/zookeeper/zookeeper.jar:/usr/lib/gphd/hbase/lib/hbase-common.jar:/usr/lib/gphd/hbase/lib/hbase-protocol.jar:/usr/lib/gphd/hbase/lib/hbase-client.jar:/usr/lib/gphd/hbase/lib/hbase-thrift.jar:/usr/lib/gphd/hbase/lib/htrace-core-2.01.jar:/etc/gphd/hbase/conf::/usr/lib/gphd/hive/lib/hive-service.jar:/usr/lib/gphd/hive/lib/libthrift-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-metastore.jar:/usr/lib/gphd/hive/lib/libfb303-0.9.0.jar:/usr/lib/gphd/hive/lib/hive-common.jar:/usr/lib/gphd/hive/lib/hive-exec.jar:/usr/lib/gphd/hive/lib/postgresql-jdbc.jar:/etc/gphd/hive/conf::/usr/lib/gphd/sm-plugins/*:

3. 编译

运行命令

javac -classpath xxx ./myword.java 

xxx部分就是上一步里面取到的class path

运行完此命令后, 当前目录下会生成一些.class 文件, 例如:

myword.class  myword$IntSumReducer.class  myword$TokenizerMapper.class

4. 将class文件打包成.jar文件

运行命令

jar -cvf myword.jar ./*.class

至此, 目标jar 文件成功生成

5. 准备一些文本文件, 上传到hdfs, 以做word count的input

例子:

随意创建一些文本文件, 保存到mapred_test 文件夹

运行命令

hadoop fs -put ./mapred_test/

确保此文件夹成功上传到hdfs 当前用户根目录下

6. 运行我们的程序

运行命令

hadoop jar ./myword.jar myword mapred_test output

顺利的话, 此命令会正常进行, 一个MapReduce job 会开始工作, 输出的结果会保存在 hdfs 当前用户根目录下的output 文件夹里面。

至此大功告成!

如果还需要更多的功能, 我们可以修改前面的源文件以达到一个真正有用的MapReduce job。

但是原理大同小异, 练手的话, 基本够了。

一个抛砖引玉的简单例子, 欢迎板砖。

版权声明:

本文由 雷子-晓飞爸 所有,发布于http://www.cnblogs.com/npumenglei/ 如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任。

如何快速地编写和运行一个属于自己的 MapReduce 例子程序的更多相关文章

  1. [Hadoop in Action] 第4章 编写MapReduce基础程序

    基于hadoop的专利数据处理示例 MapReduce程序框架 用于计数统计的MapReduce基础程序 支持用脚本语言编写MapReduce程序的hadoop流式API 用于提升性能的Combine ...

  2. 作业二:个人编程项目——编写一个能自动生成小学四则运算题目的程序

    1. 编写一个能自动生成小学四则运算题目的程序.(10分)   基本要求: 除了整数以外,还能支持真分数的四则运算. 对实现的功能进行描述,并且对实现结果要求截图.   本题发一篇随笔,内容包括: 题 ...

  3. 【实验 1-1】编写一个简单的 TCP 服务器和 TCP 客户端程序。程序均为控制台程序窗口。

    在新建的 C++源文件中编写如下代码. 1.TCP 服务器端#include<winsock2.h> //包含头文件#include<stdio.h>#include<w ...

  4. 3.编写sub过程及开发函数——《Excel VBA 程序开发自学宝典》

    3.1 编写sub过程 实例: Sub 建立10个表() If sheets.count>=10 then exit sub Sheets.add , sheets(sheets.count) ...

  5. C# -- HttpWebRequest 和 HttpWebResponse 的使用 C#编写扫雷游戏 使用IIS调试ASP.NET网站程序 WCF入门教程 ASP.Net Core开发(踩坑)指南 ASP.Net Core Razor+AdminLTE 小试牛刀 webservice创建、部署和调用 .net接收post请求并把数据转为字典格式

    C# -- HttpWebRequest 和 HttpWebResponse 的使用 C# -- HttpWebRequest 和 HttpWebResponse 的使用 结合使用HttpWebReq ...

  6. Linux打包免安装的Qt程序(编写导出依赖包的脚本copylib.sh,程序启动脚本MyApp.sh)

    本文介绍如何打包Qt程序,使其在没有安装Qt的系统可以运行. 默认前提:另外一个系统和本系统是同一个系统版本. 1,编写导出依赖包的脚本copylib.sh #!/bin/bash LibDir=$P ...

  7. vuex 快速上手,具体使用方法总结(含使用例子)

    网上有关vuex的文章很多,但有些比较复杂,这篇文章能让你快速使用vuex: vuex 用处:管理全局状态(类似全局变量,每个组件都能访问到) vuex 用法: //下面是一个js文件,用最简单最全的 ...

  8. 【babel+小程序】记“编写babel插件”与“通过语法解析替换小程序路由表”的经历

    话不多说先上图,简要说明一下干了些什么事.图可能太模糊,可以点svg看看 背景 最近公司开展了小程序的业务,派我去负责这一块的业务,其中需要处理的一个问题是接入我们web开发的传统架构--模块化开发. ...

  9. 编写一个简单的jdbc例子程序

    package it.cast.jdbc; import java.sql.Connection; import java.sql.DriverManager; import java.sql.Res ...

随机推荐

  1. 【LG3245】[HNOI2016]大数

    [LG3245][HNOI2016]大数 题面 洛谷 题解 60pts 拿vector记一下对于以每个位置为右端点符合要求子串的左端点, 则每次对于一个询问,扫一遍右端点在vector里面二分即可, ...

  2. Kubernetes学习之路(五)之Flannel网络二进制部署和测试

    一.K8S的ip地址 Node IP:节点设备的IP,如物理机,虚拟机等容器宿主的实际IP. Pod IP:Pod的IP地址,是根据docker0网络IP段进行分配的. Cluster IP:Serv ...

  3. Kubernetes学习之路(十六)之存储卷

    目录 一.存储卷的概念和类型 二.emptyDir存储卷演示 三.hostPath存储卷演示 四.nfs共享存储卷演示 五.PVC和PV的概念 六.NFS使用PV和PVC 1.配置nfs存储 2.定义 ...

  4. cogs1885 [WC2006]水管局长数据加强版

    BZOJ卡不过灰常蛋疼(毕竟人蠢自带巨大常数 这和动态维护最小生成树很像,但加边变成了删边,似乎没法做了. 然后根据之前的套路离线做,删边变成加边,就可以做了orz 二分查找的:(慢 // It is ...

  5. Hbase第五章 MapReduce操作HBase

    容易遇到的坑: 当用mapReducer操作HBase时,运行jar包的过程中如果遇到 java.lang.NoClassDefFoundError 类似的错误时,一般是由于hadoop环境没有hba ...

  6. 在Telnet中用FTP传输文件

    如果用 Telnet 传输文件? 在自己的机子上架设FTP服务器,然后登陆远程机后,就可以登录自己的FTP.利用PUT(上传命令),就可以把远程电脑的文件下载下来.     如果出现连接不上FTP,也 ...

  7. 大数据中HBase集群搭建与配置

    hbase是分布式列式存储数据库,前提条件是需要搭建hadoop集群,需要Zookeeper集群提供znode锁机制,hadoop集群已经搭建,参考 Hadoop集群搭建 ,该文主要介绍Zookeep ...

  8. spring boot 使用及最佳实践

    第一部分,spring boot 文档 Spring boot的使用 使用maven进行构建 用户可以通过继承spring-boot-starter-parent来获取默认的依赖. l  默认java ...

  9. 【Docker】第二篇 Docker镜像管理

    一.搜索镜像 1.下载一个docker镜像:我们可以通过登陆docker网站搜索自己需要的镜像,可以选择自己所需要的版本,然后通过详情也可以看到:网址:https://hub.docker.com/2 ...

  10. [2017 ACL] 对话系统

    Long Papers [Domain adaptation ] 1. Adversarial Adaptation of Synthetic or Stale Data ( Cited by 14 ...