题目传送门:洛谷 P4559

题意简述:

有 \(n\) 个学生,编号为 \(i\) 的学生有一个位置 \(a_i\)。

有 \(m\) 个询问,每次询问编号在 \([l,r]\) 区间内的学生跑到区间 \([k,k+r-l]\) 中的位置花费的距离总和的最小值。

每个学生的初始位置互不相同,最终到达的位置也必须互不相同。

题解:

不难证明,学生跑到最终的位置时,他们的相对位置不改变至少是最优解之一,这可以脑补一下。

所以我们只需要求最终相对位置不变时的答案即可。

因为学生两两位置不同,所以最终有一部分学生向右跑,有一部分学生向左跑。

向右跑的学生对答案的贡献是 \(k+rk_i-1-a_i\),\(rk_i\) 表示他的位置在这个编号区间中的学生是第 \(rk_i\) 小的。

向左跑的学生对答案的贡献是 \(a_i-k-rk_i+1\)。

显然左边一部分学生向右跑,右边一部分学生向左跑。

考虑使用主席树处理这个问题。

对权值线段树进行可持久化,则编号区间内的学生就是两个线段树相减。

考虑递归进一个区间 \([l,r]\),有 \(4\) 种情况。

  1. 这个区间中没有学生。直接返回 \(0\)。

  2. 这个区间中的学生全部往右跑。返回 \((\sum k+rk_i-1)-(\sum a_i)\),左边是等差数列求和的形式,右边可以直接记。

  3. 这个区间中的学生全部往左跑。返回 \((\sum a_i)-(\sum k+rk_i-1)\)。

  4. 不能确定这个区间中的学生的方向,递归到子树处理。

直接在主席树上实现即可。

时间复杂度 \(O(n\log n+m\log n\times\text{wys})\),因为我不会分析递归的复杂度,可能是 \(O(m\log n)\) 的。

洛谷 P4559: bzoj 5319: [JSOI2018]军训列队的更多相关文章

  1. BZOJ.5319.[JSOI2018]军训列队(主席树)

    LOJ BZOJ 洛谷 看错了,果然不是\(ZJOI\)..\(jry\)给\(JSOI\)出这么水的题做T3么= = 感觉说的有点乱,不要看我写的惹=-= 对于询问\(l,r,k\),设\(t=r- ...

  2. BZOJ5319 & 洛谷4559 & LOJ2551:[JSOI2018]军训列队——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5319 https://www.luogu.org/problemnew/show/P4559 ht ...

  3. bzoj 5319: [Jsoi2018]军训列队

    Description Solution 最优情况可以是所有人按位置从小到大排序之后依次占到自己 \(K+\) 排名的位置上去 因为每一个休息位置不同,那么一定递增,所以一定存在一个分界点,左边的是往 ...

  4. 洛谷P4559 [JSOI2018]列队 【70分二分 + 主席树】

    题目链接 洛谷P4559 题解 只会做\(70\)分的\(O(nlog^2n)\) 如果本来就在区间内的人是不用动的,区间右边的人往区间最右的那些空位跑,区间左边的人往区间最左的那些空位跑 找到这些空 ...

  5. BZOJ5319: [Jsoi2018]军训列队

    BZOJ5319: [Jsoi2018]军训列队 https://lydsy.com/JudgeOnline/problem.php?id=5319 分析: 易知把所有人按原本的顺序放到\([K,K+ ...

  6. [JSOI2018]军训列队

    [JSOI2018]军训列队 题目大意: \(n(n\le5\times10^5)\)个学生排成一排,第\(i\)个学生的位置为\(a_i\).\(m(m\le5\times10^5)\)次命令,每次 ...

  7. 洛谷 P3307: bzoj 3202: [SDOI2013] 项链

    题目传送门:洛谷P3307.这题在bzoj上是权限题. 题意简述: 这题分为两个部分: ① 有一些珠子,每个珠子可以看成一个无序三元组.三元组要满足三个数都在$1$到$m$之间,并且三个数互质,两个珠 ...

  8. 洛谷 4106 / bzoj 3614 [HEOI2014]逻辑翻译——思路+类似FWT

    题目:https://www.luogu.org/problemnew/show/P4106 https://www.lydsy.com/JudgeOnline/problem.php?id=3614 ...

  9. 洛谷 P3332 BZOJ 3110 [ZJOI2013]K大数查询

    题目链接 洛谷 bzoj 题解 整体二分 Code #include<bits/stdc++.h> #define LL long long #define RG register usi ...

随机推荐

  1. tomcat设置虚拟路径映射服务器指定的物理路径

    在tomcat的server.xml中的host标签中加入如下标签: <Context crossContext="false" debug="1" do ...

  2. [二十六]SpringBoot 之 整合log4j

    1.引入log4j依赖 在创建Spring Boot工程时,我们引入了spring-boot-starter,其中包含了spring-boot-starter-logging,该依赖内容就是Sprin ...

  3. MT【126】点对个数两题之二【图论】

    在平面上有\(n\) 个点$S={x_1,x_2\cdots,x_n}, $ 证明在这 \(n\) 个点中距离为 \(1\) 的点对数不超过 \(\dfrac{n}{4}+\dfrac{2}{2}n^ ...

  4. jQuery map和each用法

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  5. 搜索引擎(Solr-索引详解)

    时间字段类型特别说明 Solr中提供的时间字段类型( DatePointField, DateRangeField,废除的TrieDateField )是以时间毫秒数来存储时间的. 要求字段值以ISO ...

  6. Round 1 Over

    终于把题目清单上的 \(dp\) 写完了\(hhh\)

  7. 解题:USACO07FEB The Cow Lexicon

    题面 第一次做Trie上dp,感谢 @i207M 的资瓷 对子串们建立一棵Trie,设$dp[i][j]$表示到母串第$i$位为止在$Trie$上的$j$号节点时的最小修改数量,然后就可以枚举母串各位 ...

  8. MVC中使用RadioButtonFor

    http://shw3588.blog.163.com/blog/static/6507576201321395845538/ 1 进行初始化 <%=Html.RadioButtonFor(mo ...

  9. 编译geth报错的解决方法 make: *** [geth] 错误 1

    在centos下安装了go1.9.1版本,编译go-ethereum时报错: [root@localhost go-ethereum]# make gethbuild/env.sh go run bu ...

  10. C++持有Object-C对象时容易内存泄露

    在IOS项目中,可以将C++与Object-C混编,不过必须放在实现文件.mm中. 在.mm中,我们可能创建了一个C++对象A,而它持有一个Object-C对象B作为成员变量.当A对象被释放掉的时候, ...