一、使用Apache ab模拟并发压测

1、压测工具介绍

$ ab -n 100 -c 100 http://www.baidu.com/

-n表示发出100个请求,-c模拟100个并发,相当是100个人同时访问。

还可以这样写:

$ ab -t 60 -c 100 http://www.baidu.com/

-t表示60秒,-c是100个并发,会在连续60秒内不停的发出请求。

使用ab工具模拟多线程并发请求,对发出负载的机器要求比较低,既不会占用很多cpu,也不会占用很多的内存,因此也是很多DDoS攻击的必备良药,不过要慎用,别耗光自己机器的资源。通常来说1000个请求,100个并发算是比较正常的模拟。

至于工具的使用,具体见:Apache ab 测试工具使用(一)

下载后,进入support文件夹,执行命令。

2、并发测试

我创建了两张表,一个商品表,一个订单记录表;
然后写了两个接口,一个是查询商品信息,一个是下单秒杀。

查询订单:

秒杀下单:

当我并发测试时:

$ ab -n 500 -c 100 http://localhost:8080/seckill/1/

这TM肯定不行啊,这就超卖了,明明没这么多商品,结果还卖出去了。。。

二、synchronized处理并发

首先,synchronized的确是一个解决办法,而且也很简单,在方法前面加一个synchronized关键字。

但是通过压测,发现请求变的很慢,因为:
synchronized就用一个锁把这个方法锁住了,每次访问这个方法,只会有一个线程,所以这就是它导致慢的原因。通过这种方式,保证这个方法中的代码都是单线程来处理,不会出什么问题。

同时,使用synchronized还是存在一些问题的,首先,它无法做到细粒度的控制,比如同一时间有秒杀A商品和B商品的请求,都进入到了这个方法,虽然秒杀A商品的人很多,但是秒杀B商品的人很少,但是即使是买B商品,进入到了这个方法,也会一样的慢。

最重要的是,它只适合单点的情况。如果以后程序水平扩展了,弄了个集群,很显然,负载均衡之后,不同的用户看到的结果一定是五花八门的。

所以,还是使用更好的办法,使用redis分布式锁。

三、redis分布式锁

1、两个redis的命令

setnx key value 简单来说,setnx就是,如果没有这个key,那么就set一个key-value, 但是如果这个key已经存在,那么将不会再次设置,get出来的value还是最开始set进去的那个value.
网站中还专门讲到可以使用!SETNX加锁,如果获得锁,返回1,如果返回0,那么该键已经被其他的客户端锁定。
并且也提到了如何处理死锁。

getset key value 这个就更简单了,先通过key获取value,然后再将新的value set进去。

2、redis分布式锁的实现

我们希望的,无非就是这一段代码,能够单线程的去访问,因此在这段代码之前给他加锁,相应的,这段代码后面要给它解锁:

2.1 引入redis依赖

<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

2.2 配置redis

spring:
redis:
host: localhost
port: 6379

2.3 编写加锁和解锁的方法

package com.vito.service;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils; /**
* Created by VitoYi on 2018/4/5.
*/
@Component
public class RedisLock { Logger logger = LoggerFactory.getLogger(this.getClass()); @Autowired
private StringRedisTemplate redisTemplate; /**
* 加锁
* @param key 商品id
* @param value 当前时间+超时时间
* @return
*/
public boolean lock(String key, String value) {
if (redisTemplate.opsForValue().setIfAbsent(key, value)) { //这个其实就是setnx命令,只不过在java这边稍有变化,返回的是boolea
return true;
} //避免死锁,且只让一个线程拿到锁
String currentValue = redisTemplate.opsForValue().get(key);
//如果锁过期了
if (!StringUtils.isEmpty(currentValue) && Long.parseLong(currentValue) < System.currentTimeMillis()) {
//获取上一个锁的时间
String oldValues = redisTemplate.opsForValue().getAndSet(key, value); /*
只会让一个线程拿到锁
如果旧的value和currentValue相等,只会有一个线程达成条件,因为第二个线程拿到的oldValue已经和currentValue不一样了
*/
if (!StringUtils.isEmpty(oldValues) && oldValues.equals(currentValue)) {
return true;
}
}
return false;
} /**
* 解锁
* @param key
* @param value
*/
public void unlock(String key, String value) {
try {
String currentValue = redisTemplate.opsForValue().get(key);
if (!StringUtils.isEmpty(currentValue) && currentValue.equals(value)) {
redisTemplate.opsForValue().getOperations().delete(key);
}
} catch (Exception e) {
logger.error("『redis分布式锁』解锁异常,{}", e);
}
}
}

为什么要有避免死锁的一步呢?
假设没有『避免死锁』这一步,结果在执行到下单代码的时候出了问题,毕竟操作数据库、网络、io的时候抛了个异常,这个异常是偶然抛出来的,就那么偶尔一次,那么会导致解锁步骤不去执行,这时候就没有解锁,后面的请求进来自然也或得不到锁,这就被称之为死锁。
而这里的『避免死锁』,就是给锁加了一个过期时间,如果锁超时了,就返回true,解开之前的那个死锁。

2.4 下单代码中引入加锁和解锁,确保只有一个线程操作

@Autowired
private RedisLock redisLock; @Override
@Transactional
public String seckill(Integer id)throws RuntimeException {
//加锁
long time = System.currentTimeMillis() + 1000*10; //超时时间:10秒,最好设为常量 boolean isLock = redisLock.lock(String.valueOf(id), String.valueOf(time));
if(!isLock){
throw new RuntimeException("人太多了,换个姿势再试试~");
} //查库存
Product product = productMapper.findById(id);
if(product.getStock()==0) throw new RuntimeException("已经卖光");
//写入订单表
Order order=new Order();
order.setProductId(product.getId());
order.setProductName(product.getName());
orderMapper.add(order);
//减库存
product.setPrice(null);
product.setName(null);
product.setStock(product.getStock()-1);
productMapper.update(product); //解锁
redisLock.unlock(String.valueOf(id),String.valueOf(time)); return findProductInfo(id);
}

这样再来跑几次压测,就不会超卖了:

使用Redis分布式锁处理并发,解决超卖问题的更多相关文章

  1. 【分布式锁的演化】“超卖场景”,MySQL分布式锁篇

    前言 之前的文章中通过电商场景中秒杀的例子和大家分享了单体架构中锁的使用方式,但是现在很多应用系统都是相当庞大的,很多应用系统都是微服务的架构体系,那么在这种跨jvm的场景下,我们又该如何去解决并发. ...

  2. redis分布式锁解决超卖问题

    redis事务 redis事务介绍:    1. redis事务可以一次执行多个命令,本质是一组命令的集合. 2.一个事务中的所有命令都会序列化,按顺序串行化的执行而不会被其他命令插入 作用:一个队列 ...

  3. Redis 分布式锁使用不当,酿成一个重大事故,超卖了100瓶飞天茅台!!!(转)

    基于Redis使用分布式锁在当今已经不是什么新鲜事了. 本篇文章主要是基于我们实际项目中因为redis分布式锁造成的事故分析及解决方案.我们项目中的抢购订单采用的是分布式锁来解决的,有一次,运营做了一 ...

  4. Redis分布式锁解决抢购问题

    转:https://segmentfault.com/a/1190000011421467 废话不多说,首先分享一个业务场景-抢购.一个典型的高并发问题,所需的最关键字段就是库存,在高并发的情况下每次 ...

  5. 用压测模拟并发、并发处理(synchronized,redis分布式锁)

    使用工具:Apache an 测压命令: ab -n 100 -c 100 http://www.baidu.com -n代表模拟100个请求,-c代表模拟100个并发,相当于100个人同时访问 ab ...

  6. SpringBoot集成Redis分布式锁以及Redis缓存

    https://blog.csdn.net/qq_26525215/article/details/79182687 集成Redis 首先在pom.xml中加入需要的redis依赖和缓存依赖 < ...

  7. .net Redis分布式锁,Dictionary,ConcurrentDictionary 介绍

    1.背景 在计算机世界里,对于锁大家并不陌生,在现代所有的语言中几乎都提供了语言级别锁的实现,为什么我们的程序有时候会这么依赖锁呢?这个问题还是要从计算机的发展说起,随着计算机硬件的不断升级,多核cp ...

  8. redis 分布式锁的 5个坑,真是又大又深

    引言 最近项目上线的频率颇高,连着几天加班熬夜,身体有点吃不消精神也有些萎靡,无奈业务方催的紧,工期就在眼前只能硬着头皮上了.脑子浑浑噩噩的时候,写的就不能叫代码,可以直接叫做Bug.我就熬夜写了一个 ...

  9. Redis分布式锁的正确使用与实现原理

    模拟一个电商里面下单减库存的场景. 1.首先在redis里加入商品库存数量. 2.新建一个Spring Boot项目,在pom里面引入相关的依赖. <dependency> <gro ...

随机推荐

  1. python time模块(13)

    python time模块主要包含各种提供日期.时间功能的相关函数.time模块既提供了把日期.时间格式化为字符串的功能,也提供了从字符串恢复日期.时间的功能. 一.前言 在 time 模块内提供了很 ...

  2. wmi的作用

    WMI是Windows 2K/XP管理系统的核心,对于其他的Win32操作系统,WMI是一个有用的插件. WMI的作用是: ①通过它可以访问.配置.管理和监视几乎所有的Windows资源,比如用户可以 ...

  3. easyui_datagrid实现导出Excel

    easyui_datagrid实现导出Excel 一.PHPExcel使用方法 先下载PHPExcel类库文件,并引入. 二.利用AJAX实现datagrid导出Excel 原理:前台通过AJAX调用 ...

  4. 数据分析-numpy的用法

    一.jupyter notebook 两种安装和启动的方式: 第一种方式: 命令行安装:pip install jupyter 启动:cmd 中输入 jupyter notebook 缺点:必须手动去 ...

  5. C++学习笔记 之 循环

    循环 循环语句允许我们多次执行一个语句或者语句组.(插入流程图) 循环类型 C++为我们提供的循环类型如下: 循环类型 描述 while循环 当给定条件为真时,重复语句或语句组.它会在执行循环主体之前 ...

  6. docker(四):集群swarm

    docker使用入门(四):集群swarm swarm是一组位于同一集群且运行docker的机器,用户可以通过swarm manager向swarm输入命令,swarm中的机器可以是虚拟机也可以是物理 ...

  7. 解决unzip解压中文乱码问题

    使用 unzip XXX.zip 方式解压的时候会出现中文乱码 很多人推荐以下方式: 在windows执行命令,可显示字符集数字一般为936: # chcp // 解压时加上-O cp936,xxx为 ...

  8. xxx商城之商品管理

  9. 文件属性的生成操作build action

    文件属性的生成操作build action Action 说明 None 资源既不会被集成到程序集内,也不会打包到xap包中.不过我们可以通过设置CopyToOutputDirectory选项让其自动 ...

  10. 4_PHP流程控制语句_3_程序跳转和终止语句

    以下为学习孔祥盛主编的<PHP编程基础与实例教程>(第二版)所做的笔记. PHP流程控制共有3种类型:条件控制结构.循环结构以及程序跳转和终止语句. 4.3 程序跳转和终止语句 4.3.1 ...