redis应用场景,缓存的各种问题
缓存
redis还有另外一个重要的应用领域——缓存
引用来自网友的图解释缓存在架构中的位置
默认情况下,我们的服务架构如下图,客户端请求service,然后service去读取mysql数据库
问题存在于,数据库性能不够用,数据库是整个架构中最重要的一个环节,它在高并发,高写入频次的时候非常容易崩掉,这是一般的数据库本身的特性所决定的,它们的架构模式注定了不可以承受较大的并发量,所以就有了缓存:
service与高速的缓存进行交互,如果缓存中有数据直接返回客户端,如果没有才会从MySql中去查询。减小数据库的压力,提升效率,避免宕机。
例如上面章节提到的,超卖问题,有可能瞬间的流量高达上万,我们不可能把这些请求都响应到数据库上,这样速度慢不说,还随时可能宕机。
提到缓存,就不得不说下面的四大缓存名场面,几乎是做缓存必须面对的问题。
缓存击穿
想象一个场景,现在在一个xx办事大厅
张三、李四、王五、赵六、钱钱、刘八、陈九 七个人正在排队
办事处有一个窗口,有一些自动业务机,窗口里面的同志一下子只能接待一个人,而自动业务机因为速度很快可以很快接待很多人。
现在,突然、自动业务机都坏了... 所有人都排到了窗口,这下忙死了窗口里面的同志,直接撂挑子不干了!
这个例子中,自动业务机就像是缓存,起了一个缓冲的作用,业务员就像是数据库,处理能力比自动机器慢,而且很容易炸毛。
缓存击穿就是这样,当某个缓存故障、或者在高峰期缓存突然无效了,就会导致所有请求都跑到数据库去排队,就造成了缓存击穿。
缓存相当于给数据库加了一层保护能量罩,敌人进来的时候如果某个地方没有能量,那么如果这个地方的敌人特别多,就会导致缓存击穿。当从缓存中查询不到我们需要的数据就要去数据库中查询了。如果被黑客利用,或者高峰流量,频繁去访问缓存中没有的数据,那么缓存就失去了存在的意义,瞬间所有请求的压力都落在了数据库上,这样会导致数据库连接异常。
解决方案:
后台设置定时任务,主动的去更新缓存数据。这种方案容易理解,就是在自动业务机旁边加了一个维护员,坏了赶紧修好,但是机器多了就比较复杂,维护员不一定能搞得定,当key比较分散的时候,操作起来还是比较复杂的
分级缓存。什么意思呢,就是放两台业务机器,平时用第一台,第一台坏了马上用第二台,用第二台的时候修第一台,设置两层缓存保护层,1级缓存失效时间短,2级缓存失效时间长。有请求过来优先从1级缓存中去查找,如果在1级缓存中没有找到相应数据,则对该线程进行加锁,这个线程再从数据库中取到数据,更新至1级和2级缓存。其他线程则直接从2级线程中获取
缓存穿透
缓存穿透本质上和缓存击穿所面临的问题一样,大量请求落到数据库中。
但是出发点略有不用,缓存穿透的问题是,在高并发下,查询一个不存在的值时,缓存不会被命中,导致大量请求直接落到数据库上,如活动系统里面查询一个不存在的活动。
也就是说,缓存击穿是当数据是存在的,但没有被缓存到,而缓存穿透是去访问根本不存在的值。想象一个场景,黑客截取了一个已经过期的活动的数据接口,然后不断的去请求它,这时候有可能因为这个活动本身已经过期了,缓存不会命中,请求就全部落地到数据库了,这时候就造成了缓存穿透。
缓存穿透的问题解决方案也有很多
直接缓存NULL值
这个比较容易理解,就算是没数据我也缓存一下,你下次过来命中的是空数据。
这种方法需要特别注意,为空的值不能缓存的太久,否则有可能在真的有数据的时候影响了业务正常流程。
布隆过滤器
什么是布隆过滤器
布隆过滤器判断一个值不存在,那么这个值100%不存在
布隆过滤器判断一个值存在,这个值90%是存在的
布隆过滤器本质是一个位数组,位数组就是数组的每个元素都只占用 1 bit 。每个元素只能是 0 或者 1。这样申请一个 10000 个元素的位数组只占用 10000 / 8 = 1250 B 的空间。布隆过滤器除了一个位数组,还有 K 个哈希函数。
等一下,是不是有点绕,不太好理解。
我们知道hash函数可以根据一个值生成一个对应的数字,然后与一个长度可以取模可以得到一个下标值 (你不知道?看看HashMap的实现吧)
或者你根本不知道hash是怎么实现的,没关系,也可以先理解下面的,我们先把这个函数假设为 int getIndex (String value), 根据值获取到一个下标
假设我们现在有一个数组,长度是5,每个元素的值都是0
0 , 0 , 0 , 0 , 0
现在我们数据库中一共有五个id
a , b , c , d , e
现在我们对id们执行getIndex函数可以得到
getIndex(a) = 0
getIndex(b) = 1
getIndex(c) = 1 // 假设函数有一些误差
getIndex(d) = 2
getIndex(e) = 3
想一想,现在来了一个新元素,f 怎么样判断在id里面存在不存在呢?
我们把开始的数组和getIndex关联起来, 将getindex的值作为下标,设置值为1,数组就会变成
1 , 1 , 1 , 1 , 0
然后我们再来判断f是否存在,假设 getIndex(f) = 4
ok了,我们只需要判断数组里的下标4是否是1,是1就存在,0就不存在了嘛
那如果 getIndex(f) = 2 呢? 我们开了上帝视角,很明显f不存在呀。
布隆过滤器不能100%判断一个元素是否真的存在数组中,但能100%判断它不存在与数组中,这取决于hash函数的算法程度
布隆过滤器防止缓存穿透
通过对布隆过滤器的理解,我们能就过滤掉大部分的无效请求了,把数据库中所有的id都getindex解析一次放到布隆过滤器中,请求过来的时候判断,如果不存在就直接返回空就行了
缓存雪崩
如果缓存集中在一段时间内失效,发生大量的缓存穿透,所有的查询都落在数据库上,造成了缓存雪崩。
其实与缓存击穿的理论差不多,都是突然失效导致的击穿数据库。
雪崩与击穿的不同点在于雪崩强调集中失效两个字
想象~ 我现在有三个缓存key存在redis中,过期时间是一天
一天后,由于key有可能是同时设置的缓存,导致这三个key同时失效了,即使我的缓存击穿问题已经解决,这时候因为集中的key失效,也会造成击穿!,这是量级发生了改变,就像x和y的关系, x表示key的多少,y表示请求的多少。。。
解决方案
- 设置不同的过期时间
热度数据
你永远不可能每个缓存都能命中的。什么是好的缓存策略,好的缓存策略是能够识别热点数据,并在热点被读取的时候能够保证命中,这是一个好的缓存策略所必须的条件之一。
缓存一致性
数据库的数据和缓存的数据是不可能一致的,数据分为最终一致和强一致两类。
强一致 不可以使用缓存
缓存能做的只能保证数据的最终一致性。
我们能做的只能是尽可能的保证数据的一致性。
不管是先删库再删缓存 还是 先删缓存再删库,都可能出现数据不一致的情况,因为读和写操作是并发的,我们没办法保证他们的先后顺序。
具体应对策略根据业务需求来制订。
缓存过期和淘汰
Redis设置的过期时间。这个key过期时是怎么删除的?
Redis采用的是定期删除,注意不是定时删除,不可能为每一个key做一个定时任务去监控删除,这样会耗尽服务器资源。
默认是每100ms检测一次,遇到过期的key则进行删除,这里的检测也不是顺序检测,而是随机检测。
另外为了防止有漏网之鱼,例如在100ms检查的中间间隙,某个key过期,但同时key访问又进来了,这时触发 惰性删除策略 redis会在读取时判断是否已经过期,过期则直接删除。
内存淘汰是指一部分key在内存不够用的情况下会被Redis自动删除,从而会出现从缓存中查不到数据的情况。
例如我们的服务器内存为2G、但是随着业务的发展缓存的数据已经超过2G了。但是这并不能影响我们程序的运行。所以redis会从key列表中抽取一定的热度低的数据进行淘汰策略,腾出空间存储新的key
...持续更新
github: https://github.com/294678380/redis-lerning
redis应用场景,缓存的各种问题的更多相关文章
- redis 适用场景、缓存选择、java实现
redis适用场景 查询多,修改少:如国家地区信息.商品分类.数据字典 缓存选择 hibernate二级缓存.mybatis二级缓存.redishibernate二级缓存.mybatis二级缓存默认不 ...
- Net分布式系统之五:C#使用Redis集群缓存
本文介绍系统缓存组件,采用NOSQL之Redis作为系统缓存层. 一.背景 系统考虑到高并发的使用场景.对于并发提交场景,通过上一章节介绍的RabbitMQ组件解决.对于系统高并发查询,为了提供性能减 ...
- Redis应用场景-转载
1. MySql+Memcached架构的问题 实际MySQL是适合进行海量数据存储的,通过Memcached将热点数据加载到cache,加速访问,很多公司都曾经使用过这样的架构,但随着业务数据量的 ...
- <转>Redis 应用场景
http://blog.csdn.net/hguisu/article/details/8836819 1. MySql+Memcached 架构的问题 Memcached采用客户端-服务器的架构, ...
- Redis作者谈Redis应用场景
Redis作者谈Redis应用场景 毫无疑问,Redis开创了一种新的数据存储思路,使用Redis,我们不用在面对功能单调的数据库时,把精力放在如何把大象放进冰箱这样的问题上,而是利用Redis灵活多 ...
- Spring Boot使用redis做数据缓存
1 添加redis支持 在pom.xml中添加 <dependency> <groupId>org.springframework.boot</groupId> & ...
- Redis应用场景-整理
1. MySql+Memcached架构的问题 Memcached采用客户端-服务器的架构,客户端和服务器端的通讯使用自定义的协议标准,只要满足协议格式要求,客户端Library可以用任何语言实现. ...
- C#使用Redis集群缓存
C#使用Redis集群缓存 本文介绍系统缓存组件,采用NOSQL之Redis作为系统缓存层. 一.背景 系统考虑到高并发的使用场景.对于并发提交场景,通过上一章节介绍的RabbitMQ组件解决.对于系 ...
- 什么是redis,redis能做什么,redis应用场景
Redis是一个key-value存储系统.Redis的出现,很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用.这篇文章小编为大家分享了在 ...
- Redis应用场景说明与部署
Redis简介 REmote DIctionary Server(Redis)是一个基于key-value键值对的持久化数据库存储系统.redis和大名鼎鼎的memcached缓存服务很像,但是red ...
随机推荐
- 【开发笔记】- MD5加密
主要用于对用户密码的加密,保护用户账户安全: /** * @author shenruihai * */ import java.security.MessageDigest; import org. ...
- go语言实现分布式锁
本文:https://chai2010.cn/advanced-go-programming-book/ch6-cloud/ch6-02-lock.html 分布式锁 在单机程序并发或并行修改全局变量 ...
- linux对象系统---kobject, ktype, kset, subsys
本文转自:linux中kobject/ktype/kset/subsys之间的关系 随着内核版本的发展,会有一些变化,无论怎样,变化的是形式,不变的是思想! 那么他们之间具有什么关系?那应该不是'小3 ...
- SQL SERVER-Alwayson原理
流程 1.异步提交模式 主副本无须确认该副本已经完成日志固化,就可提交事务. 主副本不受辅助副本的影响 辅助副本上的DB处于SYNCHRONIZING 2.同步提交模式 主副本要确认副本已经完成日志固 ...
- hive介绍及架构设计
hive介绍及架构设计 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 我们知道MapReduce和Spark它们提供了高度抽象的编程接口便于用户编写分布式程序,它们具有极好的扩展性 ...
- jquery属性文档事件等操作
1.jq方法attr removeAttr script标签大部分都是写在body标签上.下面的情况下$符号是拿不到的. 将它放到上面就能拿到$对象了.但是不能获取body里的元素.因为代码执行顺序从 ...
- Maven简易笔记
Maven笔记 Maven笔记 Maven组成 安装配置 基本概念 Maven目录的典型结构 POM文件格式 GAV 依赖 依赖管理与父项目 关于父项目的一点主意事项 repository Maven ...
- Centos7.3云服务器上安装Nginx、MySQL、JDK、Tomcat环境
安装的软件路径建议放到/usr/local目录下 Tomcat 首先从最简单的Tomcat开始,进入到Apache的官网:http://www.apache.org,下载合适的版本来装,一般建议8.0 ...
- XML-1
1.什么是XML xml即 Extensible Markup Language,中文叫可扩展标记语言,是一种具有结构性的标记语言. 2.Xml文档的构成 XML文档即用xml语言编写的文档,它包括以 ...
- 《Exceptioning团队》第四次作业:项目需求调研与分析
一.项目基本介绍 项目 内容 这个作业属于哪个课程 任课教师博客主页链接 这个作业的要求在哪里 作业链接地址 团队名称 Exception 作业学习目标 1.探索团队软件项目需求获取技巧与方法2.学会 ...