Problem 4 dp
$des$
小 $Y$ 十分喜爱光学相关的问题, 一天他正在研究折射.
他在平面上放置了 $n$ 个折射装置, 希望利用这些装置画出美丽的折线.
折线将从某个装置出发, 并且在经过一处装置时可以转向, 若经过的装置坐
标依次为 $(x_1, y_1), (x_2, y_2) ... (x_k, y_k ),$ 则必须满足:
$\bullet \forall j \in (1, k], y_j < y_{j - 1}$
$\bullet \forall j \in (2, k], x_{j - 2} < x_{j} < x_{j - 1} 或者 x_{j - 1} < x_j < x_{j - 2}$
求不同种的画法

$sol$
按 $x$ 坐标排序,$f_{i, 0/1}$ 表示以第 $i$ 个点为顶端下来向左或向右的折线的方案数
从左到右加点,考虑前 $i$ 个点构成的包含 $i$ 点的折线,由于新点横坐标最大, 所以只可能在折线的
第一位或第二位:
1. $\forall y_j < y_i, f_{i, 0} \gets f_{j, 1}$
2. $\forall y_j > y_i, f_{j, 1} \gets f_{k, 0} | x_k > x_j 且 y_k < y_i$
第二种情况可以前缀和优化, 复杂度 $O(n^2)$
$code$
#include <bits/stdc++.h> using std::pair; typedef long long ll;
typedef pair<int, int> pii; #define fst first
#define snd second const int oo = 0x3f3f3f3f; #define gc getchar()
inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
} const int N = ;
const int mo = 1e9 + ; pii p[N + ];
int dp[N + ][], n; int main() {
n = read();
for(int i = ; i <= n; i++) p[i].fst = read(), p[i].snd = read();
sort(p + , p + n + );
for(int i = ; i <= n; i++) {
dp[i][] = dp[i][] = ;
for(int j = i - ; j >= ; j--)
if(p[j].snd > p[i].snd) (dp[j][] += dp[i][]) %= mo;
else (dp[i][] += dp[j][]) %= mo;
}
int ans = mo - n;
for(int i = ; i <= n; i++) ans = ((ans + dp[i][]) % mo + dp[i][]) % mo;
std:: cout << ans;
return ;
}
Problem 4 dp的更多相关文章
- [HDU 5293]Tree chain problem(树形dp+树链剖分)
[HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...
- [LightOJ1004]Monkey Banana Problem(dp)
题目链接:http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1004 题意:数塔的变形,上面一个下面一个,看清楚 ...
- Codeforces Round #367 (Div. 2) C. Hard problem(DP)
Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...
- (LightOJ 1004) Monkey Banana Problem 简单dp
You are in the world of mathematics to solve the great "Monkey Banana Problem". It states ...
- 【UVA 1380】 A Scheduling Problem (树形DP)
A Scheduling Problem Description There is a set of jobs, say x1, x2,..., xn <tex2html_verbatim_ ...
- BZOJ 2302: [HAOI2011]Problem c( dp )
dp(i, j)表示从i~N中为j个人选定的方案数, 状态转移就考虑选多少人为i编号, 然后从i+1的方案数算过来就可以了. 时间复杂度O(TN^2) ------------------------ ...
- BZOJ 2318: Spoj4060 game with probability Problem( 概率dp )
概率dp... http://blog.csdn.net/Vmurder/article/details/46467899 ( from : [辗转山河弋流歌 by 空灰冰魂] ) 这个讲得很好 , ...
- hdu 5106 Bits Problem(数位dp)
题目链接:hdu 5106 Bits Problem 题目大意:给定n和r,要求算出[0,r)之间全部n-onebit数的和. 解题思路:数位dp,一个ct表示个数,dp表示和,然后就剩下普通的数位d ...
- hiho1259 A Math Problem (数位dp)
题目链接:http://hihocoder.com/problemset/problem/1259 题目大意:g(t)=(f(i)%k=t)的f(i)的个数 求所有的(0-k-1)的g(i)的异或总值 ...
- BZOJ 2302: [HAOI2011]Problem c [DP 组合计数]
2302: [HAOI2011]Problem c Time Limit: 30 Sec Memory Limit: 256 MBSubmit: 648 Solved: 355[Submit][S ...
随机推荐
- LOJ2074/2157 JSOI2016/POI2011 Lightning Conductor 决策单调性DP
传送门 我们相当于要求出\(f_i = \max\limits_{j=1}^{n} (a_j + \sqrt{|i-j|})\).这个绝对值太烦人了,考虑对于\(i>j\)和\(i<j\) ...
- Thread 与 ThreadLocal
@Testpublic void testThread() { Thread thread = Thread.currentThread(); System.out.println("thr ...
- WebAPI 之问题记录
这篇博客是博主的第一篇博客,主要用于webapi学习过程中的问题记录 问题1: 重写OnAuthorization权限验证时,遇到AllowAnonymousAttribute特性不起作用的问题 p ...
- 2 Match、Filter、排序、分页、全文检索、短语匹配、关键词高亮
查索引内所有文档记录 GET /beauties/my/_search GET /beauties/my/_search { "query":{ & ...
- C语言开发中常用英文缩写
BIOS(Basic Input Output System): 基本输入输出系统 reference: https://baike.baidu.com/item/bios/91424?fr=alad ...
- Synchronized 和 Lock 的主要区别(转)
Synchronized 和 Lock 的主要区别Synchronzied 和 Lock 的主要区别如下: 存在层面:Syncronized 是Java 中的一个关键字,存在于 JVM 层面,Lock ...
- 试用一款网荐的 iOS 快速布局UI库
NerdyUI github: https://github.com/nerdycat/NerdyUI Cupcake (Swift 版本) github: https://github.com/ ...
- 【转载】Sqlserver在创建表的时候如何定义自增量Id
在Sqlserver创建表的过程中,有时候需要为表指定一个自增量Id,其实Sqlserver和Mysql等数据库都支持设置自增量Id字段,允许设置自增量Id的标识种子和标识自增量,标识种子代表初始自增 ...
- MySQL比较时间(datetime)大小
获取时间返回的秒数:strtotime('2019-05-10 00:00:00') 遇到一个业务功能需要将当前时间与数据库中的会议开始.结束时间进行比较,记录一下,方便下次用. 用unix_time ...
- c++ 使用torchscript 加载训练好的pytorch模型
1.首先官网上下载libtorch,放到当前项目下 2.将pytorch训练好的模型使用torch.jit.trace导出为.pt格式 import torch from skimage import ...