目标检测论文解读11——Mask R-CNN
目的
让Faster R-CNN能做实例分割的任务。
方法
模型的结构图如下。

与Faster R-CNN相比,主要有两点变化。
(1) 用RoI Align替代RoI Pool。
首先回顾一下RoI Pool,流程为:将RPN产生的原图侯选框映射到CNNs输出的feature map上,显然原图比feature map大,所以映射后的像素坐标可能会有小数,这里的做法是用近邻插值法,通俗讲,坐标四舍五入。
而这种做法肯定会带来一些空间位置上的小误差,而我们后面的实例分割是逐像素的,接受不了这种误差,因此采用RoI Align,用双线性插值法替代近邻插值法(具体可以参考博客:https://zhuanlan.zhihu.com/p/49832888)
(2)添加了一个基于FCN的Mask分支,用来对feature map上的RoI进行实例分割。
经过RoI Align得到的feature map,经过几层卷积,最终得到一个m*m的二值特征图,object与background,逐像素分类即可。这里之所以采用FCN,是因为我们最终所做的实例分割,需要保留空间信息;如果最后一层接FC的话得到的就是一维向量。
总结
Mask R-CNN的实例分割效果很好,尤其对于那种目标偏小的图片效果也很好,主要是因为他是先通过前面的RoI Align把目标给框出来了,后面实例分割的话是在包含目标的小框中进行的。
目标检测论文解读11——Mask R-CNN的更多相关文章
- AAAI2019 | 基于区域分解集成的目标检测 论文解读
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...
- 目标检测论文解读3——Fast R-CNN
背景 deep ConvNet兴起,VGG16应用在图像分类任务上表现良好,本文用VGG16来解决检测任务.SPP NET存在CNN层不能fine tuning的缺点,且之前的方法训练都是分为多个阶段 ...
- 目标检测论文解读5——YOLO v1
背景 之前热门的目标检测方法都是two stage的,即分为region proposal和classification两个阶段,本文是对one stage方法的初次探索. 方法 首先看一下模型的网络 ...
- 目标检测论文解读1——Rich feature hierarchies for accurate object detection and semantic segmentation
背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红 ...
- 目标检测论文解读10——DSSD
背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样, ...
- 目标检测论文解读13——FPN
引言 对于小目标通常需要用到多尺度检测,作者提出的FPN是一种快速且效果好的多尺度检测方法. 方法 a,b,c是之前的方法,其中a,c用到了多尺度检测的思想,但他们都存在明显的缺点. a方法:把每图片 ...
- 目标检测论文解读12——RetinaNet
引言 这篇论文深刻分析了one-stage的模型精度比two-stage更差的原因,并提出Focal Loss提高精度. 思路 在论文中,作者指出,造成one-stage模型精度差的原因主要是:正负样 ...
- 目标检测论文解读9——R-FCN
背景 基于ResNet 101的Faster RCNN速度很慢,本文通过提出Position-sensitive score maps(位置敏感分值图)来给模型加速. 方法 首先分析一下,为什么基于R ...
- 目标检测论文解读6——SSD
背景 R-CNN系列算法检测速度不够快,YOLO v1检测准确率较低,而且无法检测到密集目标. 方法 SSD算法跟YOLO类似,都属于one stage的算法,即通过回归算法直接从原图得到预测结果,为 ...
随机推荐
- 11/7 <Dynamic Programming>
62. Unique Paths 方法一: 二位数组 而这道题是每次可以向下走或者向右走,求到达最右下角的所有不同走法的个数.那么跟爬梯子问题一样,需要用动态规划 Dynamic Programmin ...
- Hello 2019 D 素因子贡献法计算期望 + 概率dp + 滚动数组
https://codeforces.com/contest/1097/problem/D 题意 给你一个n和k,问n经过k次操作之后留下的n的期望,每次操作n随机变成一个n的因数 题解 概率dp计算 ...
- 公共组件及脚手架webpack模板
一.公共组件的创建和使用 前面已经学习vue组件时,了解了公共组件,但在脚手架项目中只使用过局部组件.这里是讲解全局组件如何在脚手架项目中去使用. 1.创建全局组件 在src/components/C ...
- Linux性能优化实战学习笔记:第六讲
一.环境准备 1.安装软件包 终端1 机器配置:2 CPU,8GB 内存 预先安装 docker.sysstat.perf等工具 [root@luoahong ~]# docker -v Docker ...
- MySQL学习记录(导入Excel表到数据库,并筛选条件输出)
附上:重置mysql账号密码方法 ubuntu系统下mysql重置密码和修改密码操作 - skh2015java的博客 - CSDN博客(改完重启,登录mysql要root/sudo权限) Cento ...
- nodejs的作用【转】
来源地址:https://www.zhihu.com/question/33578075/answer/56951771 如果你去年注意过技术方面的新闻,我敢说你至少看到node.js不下一两次.那么 ...
- snowflake ID生成器
背景 Snowflake 是 Twitter 内部的一个 ID 生算法, 可以通过一些简单的规则保证在大规模分布式情况下生成唯一的 ID 号码. 其组成为: 第一个 bit 为未使用的符号位. 第二部 ...
- 手把手教你 通过 NuGet.Server 包 搭建nuget服务器,并使用桌面工具上传 nuget 包,免命令行
新建web项目 工具:VS2013 版本:.Net Framework 4.6,低版本也行,不过要找到对应版本的Nuget.Server 装了NuGet客户端(百度如何安装) WebForm或MVC都 ...
- 五年微软DevOps MVP (也称TFS MVP)
笔者有幸第五次被微软授予MVP称号,高兴之余,在这里简单的介绍一下MVP的基本情况: 谁是 MVP? Microsoft 最有价值专家 (MVP) 是热情地与社区分享知识的技术专家.他们总是处于&qu ...
- SpringBoot第七篇:整合Mybatis-Plus
作者:追梦1819 原文:https://www.cnblogs.com/yanfei1819/p/10881666.html 版权声明:本文为博主原创文章,转载请附上博文链接! 引言 一看这个名 ...