目的

  让Faster R-CNN能做实例分割的任务。

方法

  模型的结构图如下。

  

  与Faster R-CNN相比,主要有两点变化。

  (1) 用RoI Align替代RoI Pool。

  首先回顾一下RoI Pool,流程为:将RPN产生的原图侯选框映射到CNNs输出的feature map上,显然原图比feature map大,所以映射后的像素坐标可能会有小数,这里的做法是用近邻插值法,通俗讲,坐标四舍五入。

  而这种做法肯定会带来一些空间位置上的小误差,而我们后面的实例分割是逐像素的,接受不了这种误差,因此采用RoI Align,用双线性插值法替代近邻插值法(具体可以参考博客:https://zhuanlan.zhihu.com/p/49832888)

  (2)添加了一个基于FCN的Mask分支,用来对feature map上的RoI进行实例分割。

  经过RoI Align得到的feature map,经过几层卷积,最终得到一个m*m的二值特征图,object与background,逐像素分类即可。这里之所以采用FCN,是因为我们最终所做的实例分割,需要保留空间信息;如果最后一层接FC的话得到的就是一维向量。

总结

  Mask R-CNN的实例分割效果很好,尤其对于那种目标偏小的图片效果也很好,主要是因为他是先通过前面的RoI Align把目标给框出来了,后面实例分割的话是在包含目标的小框中进行的。

  

  

目标检测论文解读11——Mask R-CNN的更多相关文章

  1. AAAI2019 | 基于区域分解集成的目标检测 论文解读

    Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...

  2. 目标检测论文解读3——Fast R-CNN

    背景 deep ConvNet兴起,VGG16应用在图像分类任务上表现良好,本文用VGG16来解决检测任务.SPP NET存在CNN层不能fine tuning的缺点,且之前的方法训练都是分为多个阶段 ...

  3. 目标检测论文解读5——YOLO v1

    背景 之前热门的目标检测方法都是two stage的,即分为region proposal和classification两个阶段,本文是对one stage方法的初次探索. 方法 首先看一下模型的网络 ...

  4. 目标检测论文解读1——Rich feature hierarchies for accurate object detection and semantic segmentation

    背景 在2012 Imagenet LSVRC比赛中,Alexnet以15.3%的top-5 错误率轻松拔得头筹(第二名top-5错误率为26.2%).由此,ConvNet的潜力受到广泛认可,一炮而红 ...

  5. 目标检测论文解读10——DSSD

    背景 SSD算法在检测小目标时精度并不高,本文是在在SSD的基础上做出一些改进,引入卷积层,能综合上下文信息,提高模型性能. 理解 Q1:DSSD和SSD的区别有哪些? (1)SSD是一层一层下采样, ...

  6. 目标检测论文解读13——FPN

    引言 对于小目标通常需要用到多尺度检测,作者提出的FPN是一种快速且效果好的多尺度检测方法. 方法 a,b,c是之前的方法,其中a,c用到了多尺度检测的思想,但他们都存在明显的缺点. a方法:把每图片 ...

  7. 目标检测论文解读12——RetinaNet

    引言 这篇论文深刻分析了one-stage的模型精度比two-stage更差的原因,并提出Focal Loss提高精度. 思路 在论文中,作者指出,造成one-stage模型精度差的原因主要是:正负样 ...

  8. 目标检测论文解读9——R-FCN

    背景 基于ResNet 101的Faster RCNN速度很慢,本文通过提出Position-sensitive score maps(位置敏感分值图)来给模型加速. 方法 首先分析一下,为什么基于R ...

  9. 目标检测论文解读6——SSD

    背景 R-CNN系列算法检测速度不够快,YOLO v1检测准确率较低,而且无法检测到密集目标. 方法 SSD算法跟YOLO类似,都属于one stage的算法,即通过回归算法直接从原图得到预测结果,为 ...

随机推荐

  1. vim目录树

    使用vim插件:显示树形目录插件NERDTree 安装方法很简单,先把压缩文件下载下来,解压后将plugin目录下的NERD_tree.vim拷贝~/.vim/plugin以及doc目录下的NERD_ ...

  2. 解决PEnetwork启动的时候提示"An error occured while starting the "TCP/IP Registry Compatibility" Service (2)!"程序将立即退出的问题

    解决PEnetwork启动的时候提示"An error occured while starting the "TCP/IP Registry Compatibility" ...

  3. [LeetCode] 179. Largest Number 最大组合数

    Given a list of non negative integers, arrange them such that they form the largest number. Example ...

  4. 团队作业第五次—项目冲刺-Day6

    Day6 part1-SCRUM: 项目相关 作业相关 具体描述 所属班级 2019秋福大软件工程实践Z班 作业要求 团队作业第五次-项目冲刺 作业正文 hunter--冲刺集合 团队名称 hunte ...

  5. Where are registered servers stored?

    https://stackoverflow.com/questions/3064289/where-are-registered-servers-stored   They are kept as a ...

  6. Python【每日一问】37

    问: 基础题: 设计一个复利计算函数invest(),它包含三个参数:amount(资金),rate(年利率),time(投资时间). 键盘输入每个参数后,输出结果:返回每一年的资金总额 比如,amo ...

  7. ng 打包给路径添加前缀

    1.ng build --base --href /前缀名/--common - chunk --output-hashing=all --optimization 2.更改ts和html中的路径,将 ...

  8. snap应用多版本卸载

    Ubuntu18.04新增了几个内置软件使用Snap格式.同样的沙箱式处理方式,除了Canonical主推的Snap,还有Fedora的Flatpak和AppImage.一般正常使用没问题,就是第一次 ...

  9. git本地代码管理

    git真的是一个代码管理神器,帮助我们在代码开发过程中更好的进行版本管理,如果没有版本管理器,就要不停的复制粘贴,一个项目开发下来,一堆的版本文件夹,最后都不知道是哪个版本了. 用git之后,每一次的 ...

  10. __attribute__((format(printf, a, b)))

    最近,在看libevent源码,第一次看到__attribute__((format(printf, a, b)))这种写法.因此,在这里记录下用法. 功能:__attribute__ format属 ...