传送门

题意:

给出\(n\)个数,然后求\(\sum_{i=1}^n\sum_{j=i}^nmex(i,j)\)。\(mex(i,j)\)表示区间\([i,j]\)的\(mex\)。

思路:

  • 考虑枚举左右端点的其中一个,然后快速统计答案。
  • 观察发现对于一个\(a_i\),如果区间左端点从包含它到了不包含的状态,那么其会影响\([i+1,next[a_i]-1]\)这个区间中的\(mex\)值。
  • 那么尝试枚举左端点,根据左端点数值快速统计答案。(一开始想的右端点半天出不来啊= ,=)
  • 怎么统计呢?
  • 观察到左端点固定的话,区间\(mex\)是单调不减的,那么我们就利用这一性质!
  • 找到右端点位于\([i+1,next[a_i]-1]\)时,区间\(mex\)大于\(a_i\)的集合,然后区间修改即可。

总的来说,主要还是要分析到一个点对区间\(mex\)的影响,以及区间\(mex\)的单调性。

#include <bits/stdc++.h>
//#define heyuhhh ok
using namespace std;
typedef long long ll;
const int N = 200005;
int a[N], b[N];
int n;
bool vis[N];
ll sumv[N << 2], lz[N << 2], maxv[N << 2];
int nxt[N];
void Getmex() {
map <int, int> mp;
int j = 0;
for(int i = 0; i <= n + 1; i++) vis[i] = 0;
for(int i = 1; i <= n; i++) {
if(a[i] <= n) vis[a[i]] = 1;
while(vis[j]) ++j;
b[i] = j;
}
for(int i = n; i >= 1; i--) {
if(mp.find(a[i]) == mp.end()) nxt[i] = n + 1;
else nxt[i] = mp[a[i]];
mp[a[i]] = i;
}
}
void push_up(int o) {
sumv[o] = sumv[o << 1] + sumv[o << 1|1];
maxv[o] = max(maxv[o << 1], maxv[o << 1|1]);
}
void push_down(int o, int l, int r) {
if(lz[o] != -1) {
int mid = (l + r) >> 1;
lz[o << 1] = lz[o << 1|1] = lz[o];
sumv[o << 1] = 1ll * (mid - l + 1) * lz[o];
sumv[o << 1|1] = 1ll * (r - mid) * lz[o];
maxv[o << 1] = maxv[o << 1|1] = lz[o];
lz[o] = -1;
}
}
void build(int o, int l, int r) {
lz[o] = -1;
if(l == r) {
sumv[o] = maxv[o] = b[l];
return;
}
int mid = (l + r) >> 1;
build(o << 1, l, mid); build(o << 1|1, mid + 1, r);
push_up(o);
}
int query_l(int o, int l, int r, int L, int R, int v) {
if(l == r) return l;
int mid = (l + r) >> 1;
push_down(o, l, r);
int ok = -1;
if(maxv[o << 1] >= v && L <= mid) ok = query_l(o << 1, l, mid, L, R, v);
if(ok == -1 && maxv[o << 1|1] >= v && R > mid) ok = query_l(o << 1|1, mid + 1, r, L, R, v);
return ok;
}
void update(int o, int l, int r, int L, int R, int v) {
if(L <= l && r <= R) {
lz[o] = v;
sumv[o] = 1ll * (r - l + 1) * v;
maxv[o] = v;
return;
}
push_down(o, l, r);
int mid = (l + r) >> 1;
if(L <= mid) update(o << 1, l, mid, L, R, v);
if(R > mid) update(o << 1|1, mid + 1, r, L, R, v);
push_up(o);
}
ll query(int o, int l, int r, int L, int R) {
if(L <= l && r <= R) {
return sumv[o];
}
push_down(o, l, r);
int mid = (l + r) >> 1;
ll res = 0;
if(L <= mid) res += query(o << 1, l, mid, L, R);
if(R > mid) res += query(o << 1|1, mid + 1, r, L, R);
return res;
} int main() {
while(cin >> n && n) {
for(int i = 1; i <= n; i++) cin >> a[i];
Getmex();
build(1, 1, n);
ll ans = query(1, 1, n, 1, n);
for(int i = 1; i < n; i++) {
int Next = nxt[i] - 1;
int L = query_l(1, 1, n, i + 1, Next, a[i]);
if(L != -1) update(1, 1, n, L, Next, a[i]);
ans += query(1, 1, n, i + 1, n);
}
cout << ans << '\n';
}
return 0;
}

HDU4747:Mex(线段树区间修改)的更多相关文章

  1. Codeforces Round #442 (Div. 2) E Danil and a Part-time Job (dfs序加上一个线段树区间修改查询)

    题意: 给出一个具有N个点的树,现在给出两种操作: 1.get x,表示询问以x作为根的子树中,1的个数. 2.pow x,表示将以x作为根的子树全部翻转(0变1,1变0). 思路:dfs序加上一个线 ...

  2. 题解报告:hdu 1698 Just a Hook(线段树区间修改+lazy懒标记的运用)

    Problem Description In the game of DotA, Pudge’s meat hook is actually the most horrible thing for m ...

  3. poj 2528 线段树区间修改+离散化

    Mayor's posters POJ 2528 传送门 线段树区间修改加离散化 #include <cstdio> #include <iostream> #include ...

  4. E - Just a Hook HDU - 1698 线段树区间修改区间和模版题

    题意  给出一段初始化全为1的区间  后面可以一段一段更改成 1 或 2 或3 问最后整段区间的和是多少 思路:标准线段树区间和模版题 #include<cstdio> #include& ...

  5. HDU 4027 Can you answer these queries? (线段树区间修改查询)

    描述 A lot of battleships of evil are arranged in a line before the battle. Our commander decides to u ...

  6. poj2528 Mayor's posters(线段树区间修改+特殊离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  7. hiho_1078_线段树区间修改

    题目 给定一组数,要求进行若干次操作,这些操作可以分为两种类型: (1) CMD 1 beg end value 将数组中下标在[beg, end] 区间内数字都变为value (2) CMD 2 b ...

  8. HDU-4747 Mex 线段树

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4747 题意:求一个数列中,所有mex(L,R)的和. 注意到mex是单调不降的,那么首先预处理出mex ...

  9. [置顶] hdu4747 Mex 线段树

    题意:给你一个序列,让你求出对于所有区间<i, j>的mex和,mex表示该区间没有出现过的最小的整数. 思路:从时限和点数就可以看出是线段树,并且我们可以枚举左端点i, 然后求出所有左端 ...

随机推荐

  1. 怎么删除STL容器的元素

    在STL容器有顺序容器和关联容器两种. 顺序容器删除元素的方法有两种: 1.c.erase(p) 从c中删除迭代器p指定的元素.p必须指向c中一个真实元素,不能等于c.end().返回一个指向p之后元 ...

  2. DVWA SQL Injection(Blind) 通关教程

    SQL Injection(Blind),即SQL盲注,与一般注入的区别在于,一般的注入攻击者可以直接从页面上看到注入语句的执行结果,而盲注时攻击者通常是无法从显示页面上获取执行结果,甚至连注入语句是 ...

  3. Android保存的文件显示到文件管理的最近文件和下载列表中

    发现Android开发每搞一个和系统扯上关系的功能都要磨死人,对新手真不友好.运气不好难以快速精准的找到有效的资料

  4. Notepad++显示内容自动换行

  5. 用友U8合同执行单保存报错,提示“语法错误或违反访问规则”

    问题描述 用户参照合同录入第一阶段的执行单,保存时提示“语法错误或违反访问规则”,其他合同均正常,只有这张合同出现这个问题. 解决过程 语法错误或违反访问规则是SQL Server常见的报错,但其他合 ...

  6. go-gin-api 路由中间件 - 签名验证(七)

    概览 首先同步下项目概况: 上篇文章分享了,路由中间件 - Jaeger 链路追踪(实战篇),文章反响真是出乎意料, 「Go中国」 公众号也转发了,有很多朋友加我好友交流,直呼我大神,其实我哪是什么大 ...

  7. Istio开启mtls请求503问题分析

    背景 为测试Istio流量管理,将两个服务sleep.flaskapp的两个版本v1.v2(部署文件见参考链接)部署到Istio环境中,通过sleep-v1向flaskapp发起调用http://fl ...

  8. antd Table 可伸缩列没有效果

    把antd 中的Table可伸缩示例代码,下载到自己的代码中发现,鼠标放到表格的边框上,并没有出现可伸缩鼠标样式,最后的解决方法是在css样式中添加下面的样式,就解决问题了. .react-resiz ...

  9. 【leetcode】字母异位词分组

    给定一个字符串数组,将字母异位词组合在一起.字母异位词指字母相同,但排列不同的字符串. 示例: 输入: ["eat", "tea", "tan&quo ...

  10. Guarded Suspension设计模式

    Guarded Suspension 设计模式可以保证,当线程在访问某个对象时,发现条件不满足,就挂起等待条件满足时再次访问 public class GuardedSuspensionQueue { ...