传送门

题意:

给出\(n\)个数\(a_i\),现在要将其分为两堆,使得这两堆数的异或和相加最大。

思路:

  • 考虑线性基贪心求解。
  • 但直接上线性基求出一组的答案是行不通的,原因之后会说。
  • 注意到如果二进制中某一位\(1\)的个数出现了奇数次,那么无论怎么分,都会有一组中这位为\(1\);对于出现偶数次的位,两组中该位都可以有\(1\),或者都没有\(1\)。
  • 那么我们只需要贪心地插入二进制\(1\)的个数为偶数的那些位就行了,显然这样能使得最终答案最大。

下面口胡一下为什么不能直接用线性基来搞:

如果贪心地利用线性基直接求出一组答案,假设第\(i\)位二进制出现次数为奇数,那么我们可能就以\(i\)为基底,那么其余偶数位作为基底的"可能性"就降低了,所以我们在插入线性基的时候要避免奇数个数的位,这样能使答案最大。

#include <bits/stdc++.h>
#define fi first
#define se second
#define MP make_pair
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int N = 1e5 + 5; int n;
ll a[N], p[62];
bool chk[62]; void insert(ll x) {
for(int i = 60; i >= 0; i--) {
if(chk[i]) continue;
if(x >> i & 1) {
if(!p[i]) {
p[i] = x;
break;
}
x ^= p[i];
}
}
} int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> n;
ll all = 0;
for(int i = 1; i <= n; i++) cin >> a[i], all ^= a[i];
for(int i = 0; i <= 60; i++) {
if(all >> i & 1) chk[i] = 1;
}
for(int i = 1; i <= n; i++) insert(a[i]);
ll ans = 0;
for(int i = 0; i <= 60; i++) {
if(chk[i])
for(int j = 0; j <= 60; j++) {
if(p[j] >> i & 1) {
p[j] ^= (1ll << i);
}
}
}
for(int i = 60; i >= 0; i--) {
if((p[i] ^ ans) > ans) ans = p[i] ^ ans;
}
cout << ans + (ans ^ all);
return 0;
}

P.S:实现的话可以一开始就将\(a\)数组\(chk\)了的位的值减去,就让这些位不参与运算,写起来能更加简洁。

如下:

Code
#include <bits/stdc++.h>
#define fi first
#define se second
#define MP make_pair
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
const int N = 1e5 + 5; int n;
ll a[N], p[62]; void insert(ll x) {
for(int i = 60; i >= 0; i--) {
if(x >> i & 1) {
if(!p[i]) {
p[i] = x;
break;
}
x ^= p[i];
}
}
} int main() {
ios::sync_with_stdio(false); cin.tie(0);
cin >> n;
ll all = 0;
for(int i = 1; i <= n; i++) cin >> a[i], all ^= a[i];
for(int i = 0; i <= 60; i++) {
if(all >> i & 1) {
for(int j = 1; j <= n; j++) {
if(a[j] >> i & 1) a[j] -= (1ll << i);
}
}
}
for(int i = 1; i <= n; i++) insert(a[i]);
ll ans = 0;
for(int i = 60; i >= 0; i--) {
if((p[i] ^ ans) > ans) ans = p[i] ^ ans;
}
cout << ans + (ans ^ all);
return 0;
}

AtCoder abc 141 F - Xor Sum 3(线性基)的更多相关文章

  1. Atcoder ABC 141

    Atcoder ABC 141 A - Weather Prediction SB题啊,不讲. #include<iostream> #include<cstdio> #inc ...

  2. CodeForces - 1101G :(Zero XOR Subset)-less(线性基)

    You are given an array a1,a2,…,an of integer numbers. Your task is to divide the array into the maxi ...

  3. [WC2011]最大XOR和路径 线性基

    [WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...

  4. CF1101G (Zero XOR Subset)-less 线性基

    传送门 既然每一次选择出来的都是一个子段,不难想到前缀和计算(然而我没有想到--) 设异或前缀和为\(x_i\),假设我们选出来的子段为\([1,i_1],(i_1,i_2],...,(i_{k-1} ...

  5. 洛谷P4151 [WC2011] 最大XOR和路径 [线性基,DFS]

    题目传送门 最大XOR和路径 格式难调,题面就不放了. 分析: 一道需要深刻理解线性基的题目. 好久没打过线性基的题了,一开始看到这题还是有点蒙逼的,想了几种方法全被否定了.还是看了大佬的题解才会做的 ...

  6. [luogu4151 WC2011] 最大XOR和路径 (线性基)

    传送门 输入输出样例 输入样例#1: 5 7 1 2 2 1 3 2 2 4 1 2 5 1 4 5 3 5 3 4 4 3 2 输出样例#1: 6 说明 [样例说明] 根据异或的性质,将一个数异或两 ...

  7. 2019年牛客多校第四场 B题xor(线段树+线性基交)

    题目链接 传送门 题意 给你\(n\)个基底,求\([l,r]\)内的每个基底是否都能异或出\(x\). 思路 线性基交板子题,但是一直没看懂咋求,先偷一份咖啡鸡板子写篇博客吧~ 线性基交学习博客:传 ...

  8. 牛客练习赛26 D xor序列 (线性基)

    链接:https://ac.nowcoder.com/acm/contest/180/D 来源:牛客网 xor序列 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他 ...

  9. Wannafly Winter Camp 2020 Day 5J Xor on Figures - 线性基,bitset

    有一个\(2^k\cdot 2^k\) 的全零矩阵 \(M\),给出 \(2^k\cdot 2^k\) 的 \(01\) 矩阵 \(F\),现在可以将 \(F\) 的左上角置于 \(M\) 的任一位置 ...

随机推荐

  1. 201871010132-张潇潇-《面向对象程序设计(java)》第八周总结

    201871010132-张潇潇<面向对象程序设计(java)>第八周学习总结 项目 内容 这个作业属于哪个课程 https://www.cnblogs.com/nwnu-daizh/ 这 ...

  2. tomcat快速入门

    简介 Tomcat 是什么 Tomcat 是由 Apache 开发的一个 Servlet 容器,实现了对 Servlet 和 JSP 的支持,并提供了作为Web服务器的一些特有功能,如Tomcat管理 ...

  3. 安装QTP之后造成环境变量java冲突问题的解决方案

    参考:http://www.cnblogs.com/yhcreak/p/6340125.html

  4. mysql数据库的批量数据导入与导出,性能提升。

    少量数据批量导入:1. 先从数据库把唯一键的值查询出来,放在列表2. 将导入的数据遍历取出,看是否存在列表中,若不在,说明数据库没有.3. 定义两个空列表,一个做为插入数据,一个做为更新数据4. 步骤 ...

  5. 安卓和IOS、微信 公用一个二维码

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. 洛谷P1283 平板涂色 &&一本通1445:平板涂色

    题目描述 CE数码公司开发了一种名为自动涂色机(APM)的产品.它能用预定的颜色给一块由不同尺寸且互不覆盖的矩形构成的平板涂色. 为了涂色,APM需要使用一组刷子.每个刷子涂一种不同的颜色C.APM拿 ...

  7. Paper | Toward Convolutional Blind Denoising of Real Photographs

    目录 故事背景 建模现实噪声 CBDNet 非对称损失 数据库 实验 发表在2019 CVPR. 摘要 While deep convolutional neural networks (CNNs) ...

  8. windows上安装python和python开发工具

    一.python安装: 登录python官网,下载需要的安装包:https://www.python.org/downloads/windows/.,一般就下载 executable installe ...

  9. Linux应试技巧

    前言:此文是为了CSP-S第二轮认证所用系统NOI-Linux的写的,但其他的Linux系统也可以按照相同或类似的方法进行配置. 配置NOI-Linux 我大约是一个月以前由于比赛的原因才开始接触NO ...

  10. 彻底解决Intellij IDEA中文乱码问题

    关于JAVA IDE开发工具,Eclipse系列和Intelli IDEA是大部分公司的主要选择,从开发者的选择角度,Intellij IDEA似乎比Eclipse系列更受欢迎一些.当我们使用Inte ...