题目链接:http://codevs.cn/problem/3342/

题解:

最小化最大值:二分

二分最长空题段

令f[i]表示抄第i道题所花费的最小时间

状态转移方程:f[i]=min(f[j])+time[i]    max(0,i-mid-1)<=j<=i-1

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 50001
using namespace std;
int n,t,l,r,mid,ans,f[N],a[N];
inline bool check(int k)
{
memset(f,,sizeof(f));
f[]=;
for(int i=;i<=n;i++)
for(int j=max(i-k-,);j<i;j++)
f[i]=min(f[i],f[j]+a[i]);
int tmp=0x7fffffff;
for(int i=n-k;i<=n;i++) tmp=min(tmp,f[i]);
if(tmp<=t) return true;
return false;
}
int main()
{
scanf("%d%d",&n,&t);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
l=,r=n;
while(l<=r)
{
mid=l+r>>;
if(check(mid)) {ans=mid;r=mid-;}
else l=mid+;
}
printf("%d",ans);
}

用线段树维护区间最小值,就可以直接查询[i-mid-1,i-1]内的最小值

#include<cstdio>
#include<algorithm>
#define N 50001
#define INF 100000010
using namespace std;
int n,t,ql,qr,mid,ans,f[N],a[N];
struct node{int l,r,key;}tr[N*];
inline int read()//读入优化
{
int x=;char c=getchar();
while(c<''||c>'') c=getchar();
while(c>=''&&c<='') {x=x*+c-'';c=getchar();}
return x;
}
inline void begin(int k,int l,int r)//初始化
{
tr[k].key=INF;
if(l==r) return;
int mid=l+r>>;
begin(k<<,l,mid);
begin((k<<)+,mid+,r);
}
inline int query(int k,int opl,int opr)//区间查询
{
if(tr[k].l>=opl&&tr[k].r<=opr) return tr[k].key;
int mid=tr[k].l+tr[k].r>>;
{
int ll=INF;if(opl<=mid) ll=query(k<<,opl,opr);
int rr=INF;if(opr>mid) rr=query((k<<)+,opl,opr);
return min(ll,rr);
}
}
inline void change(int k,int x,int y)//单点修改
{
if(tr[k].l==tr[k].r) {tr[k].key=min(tr[k].key,y);return;}
int mid=tr[k].l+tr[k].r>>;
if(x<=mid) change(k<<,x,y);
else change((k<<)+,x,y);
tr[k].key=min(tr[k<<].key,tr[(k<<)+].key);
}
inline bool check(int k)
{
begin(,,n);
change(,,);
for(int i=;i<=n;i++)
{
int p=query(,max(,i-k-),i-);
change(,i,p+a[i]);
}
int tmp=0x7fffffff;
if(query(,n-k,n)<=t) return true;
return false;
}
inline void build(int k,int l,int r)//建树
{
tr[k].l=l;tr[k].r=r;
if(l==r) return;
int mid=l+r>>;
build(k<<,l,mid);
build((k<<)+,mid+,r);
}
int main()
{
scanf("%d%d",&n,&t);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
build(,,n);
ql=,qr=n;
while(ql<=qr)
{
mid=ql+qr>>;
if(check(mid)) {ans=mid;qr=mid-;}
else ql=mid+;
}
printf("%d",ans);
}

讲题专用——线段树——优化DP的更多相关文章

  1. 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$

    正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...

  2. [AGC011F] Train Service Planning [线段树优化dp+思维]

    思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...

  3. POJ 2376 Cleaning Shifts (线段树优化DP)

    题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...

  4. Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)

    Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...

  5. Codeforces Round #426 (Div. 2) D 线段树优化dp

    D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  6. BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】

    BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...

  7. 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp

    题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...

  8. D - The Bakery CodeForces - 834D 线段树优化dp···

    D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...

  9. 4.11 省选模拟赛 序列 二分 线段树优化dp set优化dp 缩点

    容易想到二分. 看到第一个条件容易想到缩点. 第二个条件自然是分段 然后让总和最小 容易想到dp. 缩点为先:我是采用了取了一个前缀最小值数组 二分+并查集缩点 当然也是可以直接采用 其他的奇奇怪怪的 ...

随机推荐

  1. python多条插入问题

    多条插入用excutemany(listtuple) #coding=utf-8 import MySQLdb import traceback sqlstr= "insert into t ...

  2. git rebase的使用: 合并多次commit记录; rebase一个分支的起点

    合并多次commit记录: good:https://blog.csdn.net/csdlwzy/article/details/83379546 使用 git log 命令查看提交历史: 想要合并前 ...

  3. 前端与算法 leetcode 387. 字符串中的第一个唯一字符

    目录 # 前端与算法 leetcode 387. 字符串中的第一个唯一字符 题目描述 概要 提示 解析 解法一:双循环 解法二:Set法单循环 算法 传入测试用例的运行结果 执行结果 GitHub仓库 ...

  4. 【leetcode】字母异位词分组

    给定一个字符串数组,将字母异位词组合在一起.字母异位词指字母相同,但排列不同的字符串. 示例: 输入: ["eat", "tea", "tan&quo ...

  5. jquery validate 动态生成的多个同名input的验证

    我的应用场景是,添加和修改入库单的明细,明细是以表格的形式呈现,可以动态添加商品,用jquery.validate插件做数据验证. 由于jquery.validate插件验证同名的input时只验证第 ...

  6. Salesforce LWC学习(一)Salesforce DX配置

    LWC: Create a Salesforce DX Project and Lightning Web Component:https://www.youtube.com/watch?v=p268 ...

  7. Python【day 9】函数入门2

    本节内容:1. 什么是函数2. 函数定义, 函数名, 函数体以及函数的调⽤3. 函数的返回值4. 函数的参数 一.什么是函数 我们可以先去定义一个事情或者功能(接口.服务.函数.功能). 等到需要的时 ...

  8. html5样式初始化,你值得拥有!!

    /*万能清除法*/     *{padding:0;margin:0;}     li{list-style: none;}     img{vertical-align:top;border: 0; ...

  9. 斐波那契查找(Fibonacci Search)

    斐波那契查找 斐波那契查找就是在二分查找的基础上根据斐波那契数列进行分割的.   在斐波那契数列找一个等于略大于查找表中元素个数的数F[n],将原查找表扩展为长度为F[n](如果要补充元素,则补充重复 ...

  10. EntityFramework 基类重写

    /* * ------------------------------------------------------------------------------ * * 创 建 者:F_Gang ...