B树

B-树,就是B树,B树的原英文名是B-tree,所以很多翻译为B-树,就会很多人误以为B-树是一种树、B树是另外一种树。其实,B-tree就是B树。

B-树的定义

B树(B-tree)是一种树状数据结构,是一种平衡的多路查找树,能够用来存储排序后的数据。这种数据结构能够让查找数据、循序存取、插入数据及删除的动作,都在对数时间内完成。B树,概括来说是一个一般化的二叉查找树,可以拥有多于2个子节点。与自平衡二叉查找树不同,B-树为系统最优化大块数据的读和写操作。B-tree算法减少定位记录时所经历的中间过程,从而加快存取速度。这种数据结构常被应用在数据库和文件系统的实作上。

一棵m阶的B-树,或为空树,或为满足下列特性的m叉树:

(1)树中每个结点至多有m棵子树(m>=2)。

(2)除非根结点为叶子结点,否则至少有两棵子树。

(3)除根之外的所有非终端结点至少有┌m/2┐棵子树。

(4)每个结点存放至少m/2-1(取上整)和至多m-1个关键字;(至少2个关键字)

(5)非叶子结点的关键字个数=指向儿子的指针个数-1;

(6)所有的非终端结点的结构如下:

其中,k1,k2,...,kn为n个按从小到大顺序排列的键值;

(7)所有叶子结点在同一个层次上,且不含有任何信息。

下图是一棵四阶(m=5)B_树的示意图,该树共有四层,所有叶子点均在第四层上。这里为了理解方便我就直接用实际字母的大小来排列C>B>A)(注:通常树结点的首位置要存储此结点的有效数据个数)

 

B树的查询流程

如上图我要从上图中找到E字母,查找流程如下

(1)获取根节点的关键字进行比较,当前根节点关键字为M,E<M(26个字母顺序),所以往找到指向左边的子节点(二分法规则,左小右大,左边放小于当前节点值的子节点、右边放大于当前节点值的子节点);

(2)拿到关键字D和G,D<E<G 所以直接找到D和G中间的节点;

(3)拿到E和F,因为E=E 所以直接返回关键字和指针信息(如果树结构里面没有包含所要查找的节点则返回null);

B树的插入(建立)节点

关键字插入的位置必定在最下 层的非叶结点,有下列几种情况:

1)插入后,该结点的关键字个数n<m, 不修改指针;

2)插入后,该结点的关键字个数 n=m, 则需进行“结点分裂”,令 s =┌m/2┐, 在原结点中保留 (A0,K1,…… , Ks-1,As-1); 建新结点 (As,Ks+1,…… ,Kn,An); 将(Ks,p)插入双亲结点;

3)若双亲为空,则建新的根结点。

例如:定义一个5阶树(平衡5路查找树),现在要把3、8、31、11、23、29、50、28 这些数字构建出一个5阶树出来

a. 先插入 3、8、31、11

b.再插入23、29

插入23时,m=5了,而因5阶树关键字数必<=5-1,所以在┌m/2┐处拆分。

c.再插入50、28

同理,插入50时,m<5,所以不用改变。而插入28时与b步骤相同。

B树节点的删除

(1) 在深度为(h+l)的m阶B-树中删除一个键值k,首先要查到键值k所在的结点及在结点中的位置。若k在非终端节点中,则把该结点的右边(或左边)指针所指子树中的最小(或最大)键值与k对调,使k移到终端节点。

(2) 在终端节点中删除一个键值后,使得该结点的值个数n减1,此时应分以下三种情况进行处理:

a. 若删除后结点中键值数目n≥ ┌m/2┐-1,在该结点中删去键值k连同右边的指针。

b. 若删除后结点中键值数目n< ┌m/2┐-1,且左(或右)兄弟结点的关键字数目> ┌m/2┐-1,则把左(或右)兄弟结点中最大(或最小)键值移到父结点中,再把父结点大于(或小于)上移键值的键值下移到被删关键字所在结点中。

c. 若删除后结点中键值数目n< ┌m/2┐-1,及其左、右兄弟结点的键值数目都等于┌m/2┐-1,则就必须进行结点的“合并”,即把应删的键值删去后,将该结点中的剩余键值和指针连同父结点中指向该结点指针的左边(或右边)一个键值ki一起合并到左兄弟(或右兄弟)结点中,将ki从父结点中删去。如果因此使父结点中关键字数目< ┌m/2┐-1,则对此父结点做同样处理,以致于可能直到对根结点做这样的处理而使整个树减少一层。

如果因此使父结点中关键字数目< ┌m/2┐-1,则对此父结点做同样处理,以致于可能直到对根结点做这样的处理而使整个树减少一层。

B树特点:

B树相对于平衡二叉树的不同是,每个节点包含的关键字增多了,特别是在B树应用到数据库中的时候,数据库充分利用了磁盘块的原理(磁盘数据存储是采用块的形式存储的,每个块的大小为4K,每次IO进行数据读取时,同一个磁盘块的数据可以一次性读取出来)把节点大小限制和充分使用在磁盘快大小范围;把树的节点关键字增多后树的层级比原来的二叉树少了,减少数据查找的次数和复杂度;

B+树

B+树是B树的一个升级版,相对于B树来说B+树更充分的利用了节点的空间,让查询速度更加稳定,其速度完全接近于二分法查找。为什么说B+树查找的效率要比B树更高、更稳定;我们先看看两者的区别。

B+树是B树的变体,也是一种多路搜索树,其定义基本与B-树相同,除了:

  • 1)非叶子结点的子树指针与关键字个数相同;
  • 2)非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);
  • 3)为所有叶子结点增加一个链指针;
  • 4)所有关键字都在叶子结点出现;

B+树的搜索与B树也基本相同,区别是B+树只有达到叶子结点才命中(B树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+树的性质:

  • 1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;
  • 2.不可能在非叶子结点命中;
  • 3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;
  • 4.更适合文件索引系统。

如(m=3):

B+树比B树更适合操作系统的文件索引和数据库索引的原因:

  • B+树的磁盘读写代价更低,B+树的内部节点没有指向关键字具体信息的指针,因此内部节点相对B树更小。如果把所有同一内部节点的关键字放在同一块磁盘中,盘块所能容纳的关键字数量也就越多,一次性读入内存中的需要查找的关键字也就越多,相对IO读写次数降低。
  • B+树的查询效率更加稳定
    由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

所以,B+树只要遍历叶子节点就可以实现整棵树的遍历,支持基于范围的查询,而B树不支持range-query这样的操作(或者说效率太低)。

B*树

B∗树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针,将结点的最低利用率从1/2提高到2/3。

B∗树定义了非叶子结点关键字个数至少为2/3M,即块的最低使用率为2/3(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B∗树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

所以,B∗树分配新结点的概率比B+树要低,空间使用率更高。

特点

在B+树的基础上因其初始化的容量变大,使得节点空间使用率更高,而又存有兄弟节点的指针,可以向兄弟节点转移关键字的特性使得B*树额分解次数变得更少;

参考:

1、https://zhuanlan.zhihu.com/p/27700617

2、https://blog.csdn.net/v_JULY_v/article/details/6530142/

3、https://blog.csdn.net/endlu/article/details/51720299

4、https://www.cnblogs.com/nullzx/p/8729425.html

数据结构与算法17—B树(B、B+、B*)的更多相关文章

  1. Java数据结构和算法(七)--AVL树

    在上篇博客中,学习了二分搜索树:Java数据结构和算法(六)--二叉树,但是二分搜索树本身存在一个问题: 如果现在插入的数据为1,2,3,4,5,6,这样有序的数据,或者是逆序 这种情况下的二分搜索树 ...

  2. Java数据结构与算法(20) - ch08树

    树的主要算法有插入,查找,显示,遍历,删除,其中显示和删除略微复杂. package chap08.tree; import java.io.BufferedReader; import java.i ...

  3. 【数据结构与算法】002—树与二叉树(Python)

    概念 树 树是一类重要的非线性数据结构,是以分支关系定义的层次结构 定义: 树(tree)是n(n>0)个结点的有限集T,其中: 有且仅有一个特定的结点,称为树的根(root) 当n>1时 ...

  4. 19-看图理解数据结构与算法系列(Radix树)

    Radix树 Radix树,即基数树,也称压缩前缀树,是一种提供key-value存储查找的数据结构.与Trie不同的是,它对Trie树进行了空间优化,只有一个子节点的中间节点将被压缩.同样的,Rad ...

  5. 09-看图理解数据结构与算法系列(B树)

    B树 B树即平衡查找树,一般理解为平衡多路查找树,也称为B-树.B_树.是一种自平衡树状数据结构,能对存储的数据进行O(log n)的时间复杂度进行查找.插入和删除.B树一般较多用在存储系统上,比如数 ...

  6. 数据结构与算法简记--Trie树

    Trie树 概念 多叉树,节点为字符串中的单个字符. Trie 树的本质,就是利用字符串之间的公共前缀,将重复的前缀合并在一起. 将多个字符串按字符拆分插入Trie树,用于字符串查找,关键词提示等 举 ...

  7. 13-看图理解数据结构与算法系列(Trie树)

    Trie树 Trie树,是一种搜索树,也称字典树或单词查找树,此外也称前缀树,因为某节点的后代存在共同的前缀.它的key都为字符串,能做到高效查询和插入,时间复杂度为O(k),k为字符串长度,缺点是如 ...

  8. 11-看图理解数据结构与算法系列(B树的删除)

    删除操作 删除操作比较复杂,主要是因为删除的项可能在叶子节点上也可能在非叶子节点上,而且删除后可能导致不符合B树的规定,这里暂且称之为导致B树不平衡,于是要进行一些合并.左旋.右旋等操作,使之符合B树 ...

  9. 10-看图理解数据结构与算法系列(B+树)

    B+树 B+树是B树的一种变体,也属于平衡多路查找树,大体结构与B树相同,包含根节点.内部节点和叶子节点.多用于数据库和操作系统的文件系统中,由于B+树内部节点不保存数据,所以能在内存中存放更多索引, ...

随机推荐

  1. 第05组 Beta冲刺(4/4)

    第05组 Beta冲刺(4/4) 队名:天码行空 组长博客连接 作业博客连接 团队燃尽图(共享): GitHub当日代码/文档签入记录展示(共享): 组员情况: 组员1:卢欢(组长) 过去两天完成了哪 ...

  2. piral 基于typescript 的微前端开发框架

    piral有一个微前端开发框架,功能强大,文档比较全,扩展能力也比较好 包含以下特性: 特性 高度模块化 多框架兼容 支持资源文件的拆分 全局状态管理 独立开发和部署 CLI工具 与同类框架的比较 参 ...

  3. 【树形DP】【P3177】[HAOI2015] 树上染色

    Description 给定一棵 \(n\) 个点的带权树,要求选 \(k\) 个点染成黑色,剩下染成白色,最大化两两同色点之间的距离和. Limitations \(0 \leq k \leq n ...

  4. IIS启动后不在桌面显示

    1.问题 周末一过,准备投入到紧张激烈的工作之中.不曾想IIS打开后不在桌面显示了,任务栏有打开的图标,配置的网站可以正常打开.尝试重装无果. 2.解决 Win+R,在运行中输入inetmgr.exe ...

  5. spark基础知识一

    1. spark是什么 Apache Spark™ is a unified analytics engine for large-scale data processing. spark是针对于大规 ...

  6. 10-排序5 PAT Judge (25 分)

    The ranklist of PAT is generated from the status list, which shows the scores of the submissions. Th ...

  7. IntelliJ IDEA 插件推荐

    1.GenerateAllSetter 自动生成类set方法 2.GsonFormat 根据JSON创建实体 3.Lombok plugin 简化代码 4. .ignore 忽略git提交文件 5.A ...

  8. java 压缩图片(只缩小体积,不更改图片尺寸)

      1.情景展示 在调用腾讯身份证OCR接口的时候,由于要求图片大小只能限制在1MB以内,这样,就必须使用到图片压缩技术 2.代码展示 /** * 图片处理工具类 * @explain * @auth ...

  9. a标签设置水平右对齐

      1.情景展示 如上图所示,这其实是一个a标签,如何让它右对齐呢? 2.解决方案 第一步:将行内标签转化成块级元素,即display:block: 第二步:文字右对齐,即text-align:rig ...

  10. spring cloud 服务链路追踪 skywalking 6.1

    随着微服务架构的流行,服务按照不同的维度进行拆分,一次请求往往需要涉及到多个服务.互联网应用构建在不同的软件模块集上,这些软件模块,有可能是由不同的团队开发.可能使用不同的编程语言来实现.有可能布在了 ...