题面

题解

这里讲一种硬核做法。

首先\(\mathrm{dfs}\)整棵树,求出这棵树的欧拉序,然后\(\mathrm{LCA}\)问题就变成了\(\pm 1\mathrm{RMQ}\)问题。

考虑\(\mathrm{O}(n)\)解决\(\pm 1\mathrm{RMQ}\)问题。

将原序列分块,每一块长度为\(\dfrac {\log_2 n}2\),块外用\(\mathrm{ST}\)表预处理,复杂度\(\mathrm{O}(n)\),考虑块内如何\(\mathrm{O}(1)\)回答。

因为相邻两项之差最多为\(1\),所以块内本质不同的状态只有\(2 ^ {\frac {\log n} 2} = \sqrt n\)种。

那么可以设\(f[S][l][r]\)表示状态为\(S\)时,区间\([l, r]\)的最小值。

于是块内就能\(\mathrm{O}(1)\)解决了,这一部分预处理的复杂度为\(\mathrm{O}(\sqrt n \log^2n)\)。

因为以上操作复杂度均没有超过\(\mathrm{O}(n)\),所以预处理的复杂度为\(\mathrm{O}(n)\),总复杂度为\(\mathrm{O}(n) - \mathrm{O}(1)\)。

代码

#include <cstdio>
#include <cmath>
#include <algorithm>
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout) inline int read()
{
int data = 0, w = 1; char ch = getchar();
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int maxn(500010), LEN(1050), BLK(10), N(200010);
struct edge { int next, to; } e[maxn << 1];
int head[maxn], e_num, n, m, S, dep[maxn], f[1 << BLK][BLK][BLK];
int A[maxn << 1], ST[BLK << 1][N], Log[maxn << 1], pos[maxn], cnt;
int Len, Blk, minv[N], set[N], B[maxn << 1];
inline int min(const int &x, const int &y) { return B[x] < B[y] ? x : y; }
inline int Pos(const int &x) { return (x - 1) / Len + 1; }
inline int Posy(const int &x) { return (x - 1) % Len; }
inline void add_edge(int from, int to)
{
e[++e_num] = (edge) {head[from], to};
head[from] = e_num;
} void dfs(int x, int fa)
{
A[pos[x] = ++cnt] = x, B[cnt] = dep[x];
for (int i = head[x]; i; i = e[i].next)
{
int to = e[i].to; if (to == fa) continue;
dep[to] = dep[x] + 1, dfs(to, x), A[++cnt] = x, B[cnt] = dep[x];
}
} void Init()
{
Len = std::max(1, (int) (log(cnt * 1.) / log(2.) * .5));
Blk = cnt / Len + (cnt % Len > 0); int SIZ = 1 << (Len - 1);
for (int i = 2; i <= cnt; i++) Log[i] = Log[i >> 1] + 1;
for (int i = 0; i < SIZ; i++) for (int l = 0; l < Len; l++)
for (int r = (f[i][l][l] = l) + 1, now = 0, _min = 0; r < Len; r++)
{
f[i][l][r] = f[i][l][r - 1];
if (i & (1 << (r - 1))) ++now;
else { --now; if(now < _min) _min = now, f[i][l][r] = r; }
}
for (int i = 1; i <= cnt; i++)
if (!Posy(i)) minv[Pos(i)] = i, set[Pos(i)] = 0;
else
{
if (B[i] < B[minv[Pos(i)]]) minv[Pos(i)] = i;
if (B[i] > B[i - 1]) set[Pos(i)] |= 1 << (Posy(i) - 1);
}
for (int i = 1; i <= Blk; i++) ST[0][i] = minv[i];
for (int i = 1; i <= Log[Blk]; i++)
for (int j = 1; j <= Blk - (1 << i) + 1; j++)
ST[i][j] = min(ST[i - 1][j], ST[i - 1][j + (1 << (i - 1))]);
} int Query(int l, int r)
{
l = pos[l], r = pos[r]; if(l > r) std::swap(l, r);
int idl = Pos(l), idr = Pos(r);
if (idl == idr) return (idl - 1) * Len + f[set[idl]][Posy(l)][Posy(r)] + 1;
else
{
int a1 = (idl - 1) * Len + f[set[idl]][Posy(l)][Len - 1] + 1;
int a2 = (idr - 1) * Len + f[set[idr]][0][Posy(r)] + 1;
int ans = min(a1, a2), _l = Log[idr - idl - 1];
if (idr - idl - 1)
return min(ans, min(ST[_l][idl + 1], ST[_l][idr - (1 << _l)]));
return ans;
}
} int main()
{
n = read(), m = read(), S = read();
for (int i = 1, a, b; i < n; i++)
a = read(), b = read(), add_edge(a, b), add_edge(b, a);
dep[S] = 1, dfs(S, 0); Init();
for (int a, b; m--; ) a = read(), b = read(), printf("%d\n", A[Query(a, b)]);
return 0;
}

Luogu3379 【模板】最近公共祖先(LCA)的更多相关文章

  1. [模板] 最近公共祖先/lca

    简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...

  2. Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)

    Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...

  3. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  4. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  5. 【lhyaaa】最近公共祖先LCA——倍增!!!

    高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...

  6. luogu3379 【模板】最近公共祖先(LCA) 倍增法

    题目大意:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 整体步骤:1.使两个点深度相同:2.使两个点相同. 这两个步骤都可用倍增法进行优化.定义每个节点的Elder[i]为该节点的2^k( ...

  7. 最近公共祖先(LCA)模板

    以下转自:https://www.cnblogs.com/JVxie/p/4854719.html 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖 ...

  8. HDU 2586 How far away ?(LCA模板 近期公共祖先啊)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2586 Problem Description There are n houses in the vi ...

  9. 最近公共祖先lca模板

    void dfs(int x,int root){//预处理fa和dep数组 fa[x][0]=root; dep[x]=dep[root]+1; for(int i=1;(1<<i)&l ...

  10. 【洛谷 p3379】模板-最近公共祖先(图论--倍增算法求LCA)

    题目:给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先. 解法:倍增. 1 #include<cstdio> 2 #include<cstdlib> 3 #include ...

随机推荐

  1. fulltext全文索引的使用

    Fulltext全文索引 Fulltext相关属性 查看数据库关于fulltext的配置 SHOW VARIABLES LIKE 'ft%'; -- ft就是FullText的简写 ft_boolea ...

  2. 【初识算法】- AC算法

    原文地址:https://www.cnblogs.com/jily/p/6250716.html 一.原理 AC自动机首先将模式组记录为Trie字典树的形式,以节点表示不同状态,边上标以字母表中的字符 ...

  3. python day 21: HTML的基本元素及CSS

    目录 python day 21 1. HTML 1.1 常见的HTML元素 python day 21 2019/11/02 学习资料来自老男孩与尚学堂 1. HTML 1.1 常见的HTML元素 ...

  4. nodeJS从入门到进阶二(网络部分)

    一.网络服务器 1.http状态码 1xx: 表示普通请求,没有特殊含义 2xx:请求成功 200:请求成功 3xx:表示重定向 301 永久重定向 302 临时重定向 303 使用缓存(服务器没有更 ...

  5. vue中keep-alive,include的指定页面缓存问题

    做vue项目时,有时要在某些页面做缓存,而其它页面不要.比如:A:首页,B:获取所有订单页面,C:订单详情页面:从A(首页)进入 B(获取所有订单)时应该不缓存,B(所有订单)进入 C(订单详情)订单 ...

  6. 在DoNetMVC中使用控制反转和依赖注入【DI】

    本次是在MVC5中使用Autofac 第一步:程序包管理器控制台 Install-Package Autofac.MVC5 引入nuget包 这样成功之后,会在引用中出现两个DLL,分别是Autofa ...

  7. Java文件流下载并提示文件不存在

    做文件下载功能的时候,一般使用流的形式下载文件, 如果源文件不存在,下载页面可能就会没有提示,或者一片空白 用户操作之后可能一头雾水,那如何友好提示呢? 想到的有两种 1.可以尝试下载一个名称为:文件 ...

  8. C#-NLog记录日志

    Nuget获取包 配置文件 <?xml version="1.0" encoding="utf-8" ?> <nlog xmlns= &quo ...

  9. kafka题目

    1. Kafka的用途有哪些?使用场景如何?2. Kafka中的ISR.AR又代表什么?ISR的伸缩又指什么3. Kafka中的HW.LEO.LSO.LW等分别代表什么?4. Kafka中是怎么体现消 ...

  10. c++输出中文乱码解决方案

    问题的原因应该在cmd的编码和c++程序编码(源文件编码)的不同.cmd默认的是gbk编码,而我用的vs code默认是utf-8编码,因而在输出中文文本时会出现乱码. 但我也遇到了一个比较怪异的情况 ...