【Luogu5348】密码解锁(莫比乌斯反演,数论)

题面

洛谷

题解

首先题目给定的限制是\(\sum_{n|i}a[i]=\mu(n)\),然后把这个东西反演一下,

莫比乌斯反演的式子是:\(g(n)=\sum_{n|i}f(i)\rightarrow f(n)=\sum_{n|i}g(i)\mu(\frac{i}{n})\),在这里\(\mu\)就是\(g\),而\(a\)就是\(f\)。

所以我们可以得到:\(a[m]=\sum_{m|i}\mu(i)\mu(\frac{i}{m})=\sum_{i=1}^{n/m}\mu(i)\mu(im)\)。

然后直接把后面拆开,得到:\(\mu(m)\sum_{i=1}^{n/m}[gcd(i,m)=1]\mu(i)^2\)

后面那一半接着拆,可以得到:

\[\begin{aligned}
a[m]&=\mu(m)\sum_{i=1}^{n/m}\mu(i)^2\sum_{j|i,j|m}\mu(j)\\
&=\mu(m)\sum_{j|m}\mu(j)\sum_{j|i}^{n/m}\mu(i)^2
\end{aligned}\]

前面的\(j\)显然只有\(\sqrt m\) 个了。

后面一半枚举最小的平方因子,然后把这部分的贡献减去就行了,这部分的复杂度是\(O(\sqrt \frac{n}{m})\)。

所以总的复杂度就是\(O(\sigma_0(m)\sqrt{\frac{n}{m}})\)。

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
inline ll read()
{
ll x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
ll n,ans;int m,fac[100],p;;
const int N=1e6;
bool zs[N];
int mu[N],pri[N],tot;
void Sieve()
{
mu[1]=1;
for(int i=2;i<N;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<N;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0)break;
mu[i*pri[j]]=-mu[i];
}
}
}
void Calc(int j,int v)
{
int nn=n/m/j,ret=0;
for(int i=1;i*i<=nn*j;++i)
{
int ii=i*i/__gcd(i*i,j);
ret+=nn/ii*mu[i];
}
ans+=v*ret;
}
void dfs(int x,int j,int mu)
{
if(x==p+1){Calc(j,mu);return;}
dfs(x+1,j,mu);
dfs(x+1,j*fac[x],-mu);
}
int main()
{
int T=read();Sieve();
while(T--)
{
n=read();m=read();p=ans=0;
int x=m;bool fl=false;
for(int i=2;i*i<=x;++i)
if(x%i==0)
{
int c=0;fac[++p]=i;
while(x%i==0)++c,x/=i;
if(c>1){fl=true;break;}
}
if(fl){puts("0");continue;}
if(x>1)fac[++p]=x;
dfs(1,1,1);
printf("%lld\n",ans*((p&1)?-1:1));
}
}

【Luogu5348】密码解锁(莫比乌斯反演,数论)的更多相关文章

  1. [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块)

    [BZOJ 2154]Crash的数字表格(莫比乌斯反演+数论分块) 题面 求 \[\sum_{i=1}^{n} \sum_{j=1}^{m} \mathrm{lcm}(i,j)\] 分析 \[\su ...

  2. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  3. BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块

    问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...

  4. 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)

    题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...

  5. 洛谷P3455 ZAP-Queries [POI2007] 莫比乌斯反演+数论分块

    正解:莫比乌斯反演 解题报告: 传送门! 首先这题刚看到就很,莫比乌斯反演嘛,和我前面写了题解的那个一模一样的,所以这儿就不讲这前边的做法辣QAQ 但是这样儿还有个问题,就现在已知我每次都是要O(n) ...

  6. BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)

    手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...

  7. bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...

  8. [BZOI 3994] [SDOI2015]约数个数和(莫比乌斯反演+数论分块)

    [BZOI 3994] [SDOI2015]约数个数和 题面 设d(x)为x的约数个数,给定N.M,求\(\sum _{i=1}^n \sum_{i=1}^m d(i \times j)\) T组询问 ...

  9. [计蒜客] tsy's number 解题报告 (莫比乌斯反演+数论分块)

    interlinkage: https://nanti.jisuanke.com/t/38226 description: solution: 显然$\frac{\phi(j^2)}{\phi(j)} ...

  10. Luogu5348 密码解锁

    题面 题解 记\(N = \dfrac nm\) 这道题目就是要求\(a_m = \sum_{i=1}^N \mu(i)\mu(im)\) 因为\(\mu(ij) = \mu(i)\mu(j)[\gc ...

随机推荐

  1. (九)分布式服务----Zookeeper注册中心

    ==>>点击查看本系列文章目录 首先看一下几种注册中心: 最老的就是Zookeeper了, 比较新的有Eureka,Consul 都可以做注册中心.可以自行搜索对比三者的优缺点. Zook ...

  2. css中的行内元素和块级元素总结

    块级元素 <address>,  <button>,  <caption>,  <dd>,  <del>,  <div>,  & ...

  3. devops 下测试组织管理面临的挑战及应对

    导读 先从引发的5个问题讲起,再简单回顾一下devops 简介和兴起背景 ,再从itest 测试管理团队的视角提出应对办法 DevOps后,测试面临的挑战        敏捷开发必然是迭代开发管理模式 ...

  4. Bayesian Optimization使用Hyperopt进行参数调优

    超参数优化 Bayesian Optimization使用Hyperopt进行参数调优 1. 前言 本文将介绍一种快速有效的方法用于实现机器学习模型的调参.有两种常用的调参方法:网格搜索和随机搜索.每 ...

  5. 第17节-BLE安全管理概述

    安全管理是BLE中最复杂的内容,涉及LL层.SM层.GAP层 一.妈妈的担心 1. 白名单: 妈妈说,你只能跟A.B.C这3个好孩子玩:他们打电话给你,你才可以出去玩. A.B.C三人,就在妈妈的“白 ...

  6. LG2512/BZOJ1045 「HAOI2008」糖果传递 中位数

    问题描述 LG2512 BZOJ1045 题解 这是一个链状问题的环状版本. 问题最终变为给定数轴上的\(n\)个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数. 网络流24题的 ...

  7. Nginx主配置文件说明

    #运行用户 user nobody; #启动进程,通常设置成和cpu的数量相等 worker_processes ; #全局错误日志及PID文件 #error_log logs/error.log; ...

  8. linux数据库中使用MD5加密

    MD5加密算法源码下载:https://pan.baidu.com/s/1nwyN0xV 下载完成了之后解压,得到两个文件 环境搭建: 1.把md5.h文件拷贝到/usr/include/目录下 su ...

  9. [LeetCode] 794. Valid Tic-Tac-Toe State 验证井字棋状态

    A Tic-Tac-Toe board is given as a string array board. Return True if and only if it is possible to r ...

  10. [LeetCode] 415. Add Strings 字符串相加

    Given two non-negative numbers num1 and num2 represented as string, return the sum of num1 and num2. ...