https://www.imooc.com/article/35900

参考上面大神的原文,说的非常透彻。非常便于理解。感谢 感谢

自己做个小笔记,便于自己学习

特征值是离散的,无序的。

如:

  • 性别特征:["男","女"]

  • 祖国特征:["中国","美国,"法国"]

  • 运动特征:["足球","篮球","羽毛球","乒乓球"]

假如某个样本(某个人),他的特征是这样的["男","中国","乒乓球"],我们完全可以用 [0,0,4] 来表示。
但是这样的特征处理并不能直接放入机器学习算法中。因为类别之间是无序的(运动数据就是任意排序的)。不理解没关系。

怎么转化成独热码呢?

用独热码来表示就是

男  =>  10

女  =>  01

祖国特征:["中国","美国,"法国"](这里N=3):

中国  =>  100

美国  =>  010

法国  =>  001

运动特征:["足球","篮球","羽毛球","乒乓球"](这里N=4):

足球  =>  1000

篮球  =>  0100

羽毛球  =>  0010

乒乓球  =>  0001

所以,当一个样本为["男","中国","乒乓球"]的时候,完整的特征数字化的结果为:

[1,0,1,0,0,0,0,0,1]

下图可能会更好理解:

这样做的优势 是什么呢?

对于祖国特征:["中国","美国,"法国"]

重点 重点 重点!

如果按照  中国 0 ,美国 1,法国2  普通编码的话

那么  中国和法国之间的距离是2,中国和美国的距离是1,美国和法国的距离是1,但是实际上,这种距离是因为我们编码的顺序导致的。中国和法国并不是真的 距离是2

而在机器学习中需要计算两者之间的距离(欧氏距离)。这种普通的编码方式并不能表示清楚距离。

而如果用独热码来编码

中国 1 0 0

美国 0 1 0

法国 0 0 1

相当于我搭建了一个三维的空间

那么 任意两国的距离都是 sqrt(2),距离都是相等的!      这才是关键 关键!

相当于 中国在 x+点处,美国 在y+点处,法国在 z+点处。那么三者之间的距离是不是相等呢?

关于机器学习

在one hot representation编码的每个单词都是一个维度,彼此独立。

这里我们可以看到One hot方式处理的数据

1、会产生大量冗余的稀疏矩阵

2、维度(单词)间的关系,没有得到体现

要是one hot encoding的类别数目不太多,建议优先考虑

最后再次感谢 NateHuang

独热编码(One-Hot)的理解的更多相关文章

  1. 【转】数据预处理之独热编码(One-Hot Encoding)

    原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...

  2. 机器学习实战:数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  3. 数据预处理:独热编码(One-Hot Encoding)

    python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...

  4. 数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码

    一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one- ...

  5. 数据预处理之独热编码(One-Hot Encoding)(转载)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  6. 机器学习 数据预处理之独热编码(One-Hot Encoding)

    问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...

  7. 机器学习:数据预处理之独热编码(One-Hot)

    前言 ———————————————————————————————————————— 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等.这些特征值并不是连续的 ...

  8. 数据预处理之独热编码(One-Hot Encoding)

    问题的由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑以下三个特征: ["male","female"] ["from ...

  9. One-Hot Encoding(独热编码)

    前几天查了一些与独热编码相关的资料后,发现看不进去...看不太懂,今天又查了一下,然后写了写代码,通过自己写例子加上别人的解释后,从结果上观察,明白了sklearn中独热编码做了什么事. 下面举个例子 ...

  10. 独热编码OneHotEncoder简介

    在分类和聚类运算中我们经常计算两个个体之间的距离,对于连续的数字(Numric)这一点不成问题,但是对于名词性(Norminal)的类别,计算距离很难.即使将类别与数字对应,例如{'A','B','C ...

随机推荐

  1. C++内联函数(C++ inline)详解

    使用函数能够避免将相同代码重写多次的麻烦,还能减少可执行程序的体积,但也会带来程序运行时间上的开销. 函数调用在执行时,首先要在栈中为形参和局部变量分配存储空间,然后还要将实参的值复制给形参,接下来还 ...

  2. Shell命令行提示定制

    /******************************************************************************* * Shell命令行提示定制 * 说明 ...

  3. SpringBoot——配置文件加载位置及外部配置加载顺序

    声明 本文部分转自:SpringBoot配置文件加载位置与优先级 正文 1. 项目内部配置文件 spring boot 启动会扫描以下位置的application.properties或者applic ...

  4. Linux系统下zookeeper客户端命令使用

    1. 启动客户端 [admin@yrjk bin]$ ./zkCli.sh [zk: localhost:2181(CONNECTED) 0] 2. 显示所有操作命令 [zk: localhost:2 ...

  5. Android之WebRTC介绍(二)

    WebRTC提供了点对点之间的通信,但并不意味着WebRTC不需要服务器.暂且不说基于服务器的一些扩展业务,WebRTC至少有两件事必须要用到服务器: 1. 浏览器之间交换建立通信的元数据(信令)必须 ...

  6. django入门5使用xadmin搭建管理后台

    环境搭建: pip install django==1.9.8 pip install MySQL_python-1.2.5-cp27-none-win_amd64.whl pip install f ...

  7. springMVC返回json数据乱码问

    在springMVC controller中返回json数据出现乱码问题,因为没有进行编码,只需要简单的注解就可以了 在@RequestMapping()中加入produces="text/ ...

  8. Starting Jenkins bash: /usr/bin/java: 没有那个文件或目录

    [root@localhost /]# systemctl status jenkins.service ● jenkins.service - LSB: Jenkins Automation Ser ...

  9. sql 在查询到的语句基础上添加行号

    正常查询语句: SELECT TagName FROM ps_status a WHERE a.TagName LIKE "DTmk_zybf%1bxxjcqh.PV" 查询结果: ...

  10. ABAP基础篇2 数据类型

    基本数据类型列表: 1.长度可变的内置类型(String.XString)1)string类型 在ABAP程序中,string类型是长度无限的字符型字段,可以和CHAR ,D,T ,I,N (F和P未 ...