独热编码(One-Hot)的理解
https://www.imooc.com/article/35900
参考上面大神的原文,说的非常透彻。非常便于理解。感谢 感谢
自己做个小笔记,便于自己学习
特征值是离散的,无序的。
如:
性别特征:["男","女"]
祖国特征:["中国","美国,"法国"]
运动特征:["足球","篮球","羽毛球","乒乓球"]
假如某个样本(某个人),他的特征是这样的["男","中国","乒乓球"],我们完全可以用 [0,0,4] 来表示。
但是这样的特征处理并不能直接放入机器学习算法中。因为类别之间是无序的(运动数据就是任意排序的)。不理解没关系。
怎么转化成独热码呢?
用独热码来表示就是
男 => 10
女 => 01
祖国特征:["中国","美国,"法国"](这里N=3):
中国 => 100
美国 => 010
法国 => 001
运动特征:["足球","篮球","羽毛球","乒乓球"](这里N=4):
足球 => 1000
篮球 => 0100
羽毛球 => 0010
乒乓球 => 0001
所以,当一个样本为["男","中国","乒乓球"]的时候,完整的特征数字化的结果为:
[1,0,1,0,0,0,0,0,1]
下图可能会更好理解:

这样做的优势 是什么呢?
对于祖国特征:["中国","美国,"法国"]
重点 重点 重点!
如果按照 中国 0 ,美国 1,法国2 普通编码的话
那么 中国和法国之间的距离是2,中国和美国的距离是1,美国和法国的距离是1,但是实际上,这种距离是因为我们编码的顺序导致的。中国和法国并不是真的 距离是2 。
而在机器学习中需要计算两者之间的距离(欧氏距离)。这种普通的编码方式并不能表示清楚距离。
而如果用独热码来编码
中国 1 0 0
美国 0 1 0
法国 0 0 1
相当于我搭建了一个三维的空间
那么 任意两国的距离都是 sqrt(2),距离都是相等的! 这才是关键 关键!

相当于 中国在 x+点处,美国 在y+点处,法国在 z+点处。那么三者之间的距离是不是相等呢?
关于机器学习

在one hot representation编码的每个单词都是一个维度,彼此独立。
这里我们可以看到One hot方式处理的数据
1、会产生大量冗余的稀疏矩阵
2、维度(单词)间的关系,没有得到体现
要是one hot encoding的类别数目不太多,建议优先考虑
最后再次感谢 NateHuang
独热编码(One-Hot)的理解的更多相关文章
- 【转】数据预处理之独热编码(One-Hot Encoding)
原文链接:http://blog.csdn.net/dulingtingzi/article/details/51374487 问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. ...
- 机器学习实战:数据预处理之独热编码(One-Hot Encoding)
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...
- 数据预处理:独热编码(One-Hot Encoding)
python机器学习-sklearn挖掘乳腺癌细胞( 博主亲自录制) 网易云观看地址 https://study.163.com/course/introduction.htm?courseId=10 ...
- 数据预处理:独热编码(One-Hot Encoding)和 LabelEncoder标签编码
一.问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 离散特征的编码分为两种情况: 1.离散特征的取值之间没有大小的意义,比如color:[red,blue],那么就使用one- ...
- 数据预处理之独热编码(One-Hot Encoding)(转载)
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...
- 机器学习 数据预处理之独热编码(One-Hot Encoding)
问题由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑一下的三个特征: ["male", "female"] ["from ...
- 机器学习:数据预处理之独热编码(One-Hot)
前言 ———————————————————————————————————————— 在机器学习算法中,我们经常会遇到分类特征,例如:人的性别有男女,祖国有中国,美国,法国等.这些特征值并不是连续的 ...
- 数据预处理之独热编码(One-Hot Encoding)
问题的由来 在很多机器学习任务中,特征并不总是连续值,而有可能是分类值. 例如,考虑以下三个特征: ["male","female"] ["from ...
- One-Hot Encoding(独热编码)
前几天查了一些与独热编码相关的资料后,发现看不进去...看不太懂,今天又查了一下,然后写了写代码,通过自己写例子加上别人的解释后,从结果上观察,明白了sklearn中独热编码做了什么事. 下面举个例子 ...
- 独热编码OneHotEncoder简介
在分类和聚类运算中我们经常计算两个个体之间的距离,对于连续的数字(Numric)这一点不成问题,但是对于名词性(Norminal)的类别,计算距离很难.即使将类别与数字对应,例如{'A','B','C ...
随机推荐
- C++内联函数(C++ inline)详解
使用函数能够避免将相同代码重写多次的麻烦,还能减少可执行程序的体积,但也会带来程序运行时间上的开销. 函数调用在执行时,首先要在栈中为形参和局部变量分配存储空间,然后还要将实参的值复制给形参,接下来还 ...
- Shell命令行提示定制
/******************************************************************************* * Shell命令行提示定制 * 说明 ...
- SpringBoot——配置文件加载位置及外部配置加载顺序
声明 本文部分转自:SpringBoot配置文件加载位置与优先级 正文 1. 项目内部配置文件 spring boot 启动会扫描以下位置的application.properties或者applic ...
- Linux系统下zookeeper客户端命令使用
1. 启动客户端 [admin@yrjk bin]$ ./zkCli.sh [zk: localhost:2181(CONNECTED) 0] 2. 显示所有操作命令 [zk: localhost:2 ...
- Android之WebRTC介绍(二)
WebRTC提供了点对点之间的通信,但并不意味着WebRTC不需要服务器.暂且不说基于服务器的一些扩展业务,WebRTC至少有两件事必须要用到服务器: 1. 浏览器之间交换建立通信的元数据(信令)必须 ...
- django入门5使用xadmin搭建管理后台
环境搭建: pip install django==1.9.8 pip install MySQL_python-1.2.5-cp27-none-win_amd64.whl pip install f ...
- springMVC返回json数据乱码问
在springMVC controller中返回json数据出现乱码问题,因为没有进行编码,只需要简单的注解就可以了 在@RequestMapping()中加入produces="text/ ...
- Starting Jenkins bash: /usr/bin/java: 没有那个文件或目录
[root@localhost /]# systemctl status jenkins.service ● jenkins.service - LSB: Jenkins Automation Ser ...
- sql 在查询到的语句基础上添加行号
正常查询语句: SELECT TagName FROM ps_status a WHERE a.TagName LIKE "DTmk_zybf%1bxxjcqh.PV" 查询结果: ...
- ABAP基础篇2 数据类型
基本数据类型列表: 1.长度可变的内置类型(String.XString)1)string类型 在ABAP程序中,string类型是长度无限的字符型字段,可以和CHAR ,D,T ,I,N (F和P未 ...