最近公共祖先 LCA 递归非递归
给定一棵二叉树,找到两个节点的最近公共父节点(LCA)。
最近公共祖先是两个节点的公共的祖先节点且具有最大深度。
假设给出的两个节点都在树中存在。
dfs递归写法
查找两个node的最近公共祖先,分三种情况:
- 如果两个node在root的两边,那么最近公共祖先就是root。
- 如果两个node在root的左边,那么把root的左子树作为root,再递归。
- 如果两个node在root的右边,那么把root的右子树作为root,再递归。
深度优先遍历二叉树,一旦找到了两个节点其中的一个,就将这个几点返回给上一层,上一层节点通过判断其左右子树中是否恰好包含n1和n2两个节点,如果找到,对应的上一层节点肯定是所求的LCA;若果不是,将包括两个节点中任意一个的较低的节点返回给上一层,否则返回NULL。
/**
* Definition of TreeNode:
* class TreeNode {
* public:
* int val;
* TreeNode *left, *right;
* TreeNode(int val) {
* this->val = val;
* this->left = this->right = NULL;
* }
* }
*/ class Solution {
public:
/*
* @param root: The root of the binary search tree.
* @param A: A TreeNode in a Binary.
* @param B: A TreeNode in a Binary.
* @return: Return the least common ancestor(LCA) of the two nodes.
*/
TreeNode * lowestCommonAncestor(TreeNode * root, TreeNode * A, TreeNode * B) {
// write your code here
//如果当前节点为空,或者与目标节点中的一个相同,则返回该节点
if(root == NULL) return NULL;
if(root==A || root==B) return root; //递归寻找A B在左右子树的位置
TreeNode* left = lowestCommonAncestor(root->left,A,B);
TreeNode* right = lowestCommonAncestor(root->right,A,B); //如果A B分别位于root的两侧,则root是他们的LCA,否则是左子树或者右子树
if(left&&right) return root; return left?left:right; }
};
非递归:
后序遍历非递归
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if (root == nullptr)
return root;
stack<TreeNode*> s;
vector<TreeNode*> vec; // p和q的公共祖先
bool tag1 = false; // true:找到p
bool tag2 = false; // true:找到q
s.push(root);
TreeNode* lastRoot = root;
while (!s.empty()) // lastRoot(区分从左/右孩子返回)
{
root = s.top();
if (root == p) {
if(tag1 == false && tag2 == false)
vec.push_back(root);
tag1 = true;
}
else if (root == q) {
if (tag2 == false && tag1 == false)
vec.push_back(root);
tag2 = true;
}
if (!tag1 && !tag2)
vec.push_back(root); // 公共祖先入vector
// 找到p,q并且root在公共祖先数组中
if (tag1 && tag2 && find(vec.begin(), vec.end(), root) != vec.end())
return root;
// root的孩子节点还没访问
if (lastRoot != root->right)
{
if (lastRoot != root->left) {
if (root->left != nullptr) {
s.push(root->left);
continue;
}
}
if (root->right != nullptr) {
s.push(root->right);
continue;
}
}
// 孩子节点访问完,弹栈向上回溯
lastRoot = root;
s.pop();
}
return nullptr;
}
最近公共祖先 LCA 递归非递归的更多相关文章
- [程序员代码面试指南]二叉树问题-在二叉树中找到两个节点的最近公共祖先、[LeetCode]235. 二叉搜索树的最近公共祖先(BST)(非递归)
题目 题解 法一: 按照递归的思维去想: 递归终止条件 递归 返回值 1 如果p.q都不在root为根节点的子树中,返回null 2 如果p.q其中之一在root为根节点的子树中,返回该节点 3 如果 ...
- Reverse Linked List 递归非递归实现
单链表反转--递归非递归实现 Java接口: ListNode reverseList(ListNode head) 非递归的实现 有2种,参考 头结点插入法 就地反转 递归的实现 1) Divide ...
- Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)
Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...
- POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)
POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- 【数据结构】——搜索二叉树的插入,查找和删除(递归&非递归)
一.搜索二叉树的插入,查找,删除 简单说说搜索二叉树概念: 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 若它的右 ...
- [模板] 最近公共祖先/lca
简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...
- 【lhyaaa】最近公共祖先LCA——倍增!!!
高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...
- 【Leetcode】查找二叉树中任意结点的最近公共祖先(LCA问题)
寻找最近公共祖先,示例如下: 1 / \ 2 3 / \ / \ 4 5 6 7 / \ ...
随机推荐
- 强大的接口调试工具-Postman图文详解
前言 在前后端分离开发时,后端工作人员完成系统接口开发后,需要与前端人员对接,测试调试接口,验证接口的正确性可用性.而这要求前端开发进度和后端进度保持基本一致,任何一方的进度跟不上,都无法及时完成功能 ...
- Windows 10中的CSC.exe、CSC.rsp
(1)CSC.exe位置 [4.0的位于] C:\Windows\Microsoft.NET\Framework\v4.0.30319 [之后版本的位于] C:\Program Files (x86) ...
- css实现步骤条(未封装组件)
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- UFUN函数 UF_CSYS UF_MODL UF_OBJ函数(建模注意坐标系);
//用到的函数 //UF_MODL_create_block1 ,UF_MODL_ask_feat_body,UF_OBJ_set_name,UF_CSYS_map_point UF_initiali ...
- Numpy | 04 数组属性
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二 ...
- CLR Exception---E0434352
什么是CLR Exception---E0434352 CLR异常是.NET应用程序生成的异常类型.异常被封装在从System.exception类派生的类中.它的异常代码是0xE0434352,代码 ...
- Git 管理篇(详细)
新建repository 本地目录下,在命令行里新建一个代码仓库(repository) 里面只有一个README.md 命令如下: touch README.md git init 初始化repos ...
- Golang 位向量
位图 位图(Bitmap)是通过一个 bit 来表示某个元素对应的值或者状态.它并不是什么新的数据结构.它的内容其实就是普通的字符串. 在redis中,我们可以通过 get/set 获取位图的内容,也 ...
- GEO Gene Expression Omnibus
GEO Gene Expression Omnibus 基因表达数据库 网址:https://www.ncbi.nlm.nih.gov/geo/ GEO的数据存储方式 GEO数据库具体存放四类数据: ...
- 解决'maven lifecycle mapping not converted'的问题
基于maven的项目,使用各种maven plugin来完成开发中的各种工作,例如编译代码,打包,部署等等… 每个plugin包含许多的goal,用来做特定的事情.典型的基于java的maven项目就 ...