(1过,调试很久)

给定三个字符串 s1s2s3, 验证 s3 是否是由 s1 和 s2 交错组成的。

示例 1:

输入: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac"
输出: true

示例 2:

输入: s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc"
输出: false

关键:设dp[i][j]表示s3的前i+j个字符可以由s1的前i个字符和s2的前j个字符交织而成

看了这句提示才写出来,中途忽略了length1 + length2 != length3的条件调试了很久

    public boolean isInterleave(String s1, String s2, String s3) {
int length1 = s1.length();
int length2 = s2.length();
//s3长度可能小于s1+s2,s3.charAt(i+j-1)会溢出
int length3 = s3.length();
//设dp[i][j]表示s3的前i+j个字符可以由s1的前i个字符和s2的前j个字符交织而成
boolean[][] dp = new boolean[length1+1][length2+1];
//初始化
if (length1 + length2 != length3)
return false;
dp[0][0] = true;
for (int i=1;i<=length1;i++) {
if (dp[i - 1][0] && s1.charAt(i-1) == s3.charAt(i-1))
dp[i][0] = true;
else
dp[i][0] = false;
}
for (int i=1;i<=length2;i++) {
if (dp[0][i-1] && s2.charAt(i-1) == s3.charAt(i-1))
dp[0][i] = true;
else
dp[0][i] = false;
}
for (int i=1;i<=length1;i++) {
for (int j=1;j<=length2;j++) {
if ((dp[i - 1][j] && s1.charAt(i - 1) == s3.charAt(i + j - 1)) || (dp[i][j - 1] && s2.charAt(j - 1) == s3.charAt(i + j - 1))) {
dp[i][j] = true;
} else {
dp[i][j] = false;
}
}
}
return dp[length1][length2];
}

参考:

s3是由s1和s2交织生成的,意味着s3由s1和s2组成,在s3中s1和s2字符的顺序是不能变化的,和子序列题型类似,这种题我们一般是用动态规划来解。

    1. 设dp[i][j]表示s3的前i+j个字符可以由s1的前i个字符和s2的前j个字符交织而成。
  1. 状态转移方程:有两种情况
    • 第一个状态转移方程:
      dp[i][j]= {(dp[i - 1][j] && s1.charAt(i - 1) == s3.charAt(i + j - 1)}
      dp[i-1][j]表示若s3的前i+j-1个字符能够由s1前i-1个字符和s2的前j个字符交织而成,那么只需要s1的第i个字符与s3的第i+j个字符相等(charAt索引从0开始),那么dp[i][j]=true;
    • 第二个状态转移方程:
      dp[i][j]= {(dp[i][j-1] && s2.charAt(j - 1) == s3.charAt(i + j - 1)}
      dp[i-1][j]表示若s3的前i+j-1个字符能够由s1前i个字符和s2的前j-1个字符交织而成,那么只需要s2的第j个字符与s3的第i+j个字符相等(charAt索引从0开始),那么dp[i][j]=true;
链接:https://www.nowcoder.com/questionTerminal/4d0f94617e454e2da23e660cded4d9e8
来源:牛客网 public class Solution {
    public boolean isInterleave(String s1, String s2, String s3) {
        int len1 = s1.length();
        int len2 = s2.length();
        int len3 = s3.length();
       
        if(len1+len2 !=len3){
          return false;
        }
         
        char[] chs1 = s1.toCharArray();
        char[] chs2 = s2.toCharArray();
        char[] chs3 = s3.toCharArray();
         
        //dp[i][j]代表 chs1[0...i]  chs2[0...j]能否顺序匹配chs3[i+j]
        boolean[][] dp = new boolean[len1+1][len2+1];
        //初始化 s1中取0个字符 s2中取0个字符 匹配s3从0开始的0个字符 肯定匹配true
        dp[0][0] = true;
         
        //s1中取0个s2中取i个 去和s3中0+i 个匹配
        for(int i = 1 ; i < len2 + 1; i ++ ){
          dp[0][i] = dp[0][i-1] && chs2[i-1] == chs3[i-1];
        }
        //s2中取0个s1中取i个 去和s3中0+i 个匹配
        for(int i = 1 ; i < len1 + 1; i ++ ){
          dp[i][0] = dp[i-1][0] && chs1[i-1] == chs3[i-1];
        }
         
        for(int i = 1 ; i < len1+1 ; i ++ ){
          for(int j = 1 ; j < len2+1 ; j ++ ){
            dp[i][j] = dp[i-1][j] && (chs3[i+j-1] == chs1[i-1])
                || dp[i][j-1] && (chs3[i+j-1] == chs2[j-1]);
          }
        }
         
        return dp[len1][len2];
    }
}

【leetcode-97 动态规划】 交错字符串的更多相关文章

  1. Java实现 LeetCode 97 交错字符串

    97. 交错字符串 给定三个字符串 s1, s2, s3, 验证 s3 是否是由 s1 和 s2 交错组成的. 示例 1: 输入: s1 = "aabcc", s2 = " ...

  2. Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings)

    Leetcode之动态规划(DP)专题-712. 两个字符串的最小ASCII删除和(Minimum ASCII Delete Sum for Two Strings) 给定两个字符串s1, s2,找到 ...

  3. Leetcode 91. Decode Ways 解码方法(动态规划,字符串处理)

    Leetcode 91. Decode Ways 解码方法(动态规划,字符串处理) 题目描述 一条报文包含字母A-Z,使用下面的字母-数字映射进行解码 'A' -> 1 'B' -> 2 ...

  4. leetcode笔记 动态规划在字符串匹配中的应用

    目录 leetcode笔记 动态规划在字符串匹配中的应用 0 参考文献 1. [10. Regular Expression Matching] 1.1 题目 1.2 思路 && 解题 ...

  5. Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings)

    Leetcode之动态规划(DP)专题-647. 回文子串(Palindromic Substrings) 给定一个字符串,你的任务是计算这个字符串中有多少个回文子串. 具有不同开始位置或结束位置的子 ...

  6. Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes)

    Leetcode之动态规划(DP)专题-474. 一和零(Ones and Zeroes) 在计算机界中,我们总是追求用有限的资源获取最大的收益. 现在,假设你分别支配着 m 个 0 和 n 个 1. ...

  7. Leetcode之动态规划(DP)专题-392. 判断子序列(Is Subsequence)

    Leetcode之动态规划(DP)专题-392. 判断子序列(Is Subsequence) 给定字符串 s 和 t ,判断 s 是否为 t 的子序列. 你可以认为 s 和 t 中仅包含英文小写字母. ...

  8. Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance)

    Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance) 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可 ...

  9. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

  10. Leetcode(8)字符串转换整数

    Leetcode(8)字符串转换整数 [题目表述]: 请你来实现一个 atoi 函数,使其能将字符串转换成整数. 首先,该函数会根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止. 当我 ...

随机推荐

  1. 在error日志打印异常

    在日志中打印异常,经常会看到以下的写法: logger.error(e.getMessage()); 或者是: e.printStackTrace(); 这两种其实都不太好. e.getMessage ...

  2. 冰多多团队-第六次Scrum会议

    冰多多团队-第六次Scrum会议 工作情况 团队成员 已完成任务 待完成任务 zpj ASR bug修复 接入IAT模块 牛雅哲 完成语音识别->词典->termux的接口设计,熟悉了语法 ...

  3. 【C++】C++中的lambda表达式和函数对象

    目录结构: contents structure [-] lambda表达式 lambda c++14新特性 lambda捕捉表达式 泛型lambda表达式 函数对象 函数适配器 绑定器(binder ...

  4. TCP 粘包问题

    TCP 粘包,主要是因为发送端发送的两个包,TCP按照流进行发送,缓冲器满了才发送. 假如两个包都比较小的话,就会把两个包合并到一起进行发送,造成接收端接到的流无法知道这是一个包还是两个包 假如发送两 ...

  5. Python之多态案例

    class Canvas: def draw_pic(self, shape): print('--start draw--') shape.draw(self) class Rectangle: d ...

  6. 【转】Python查找某文件夹下的所有excel文件

    # -*- coding: utf-8 -*- # author:baoshan import os dirname = r'D:\0.shenma\01.聊城资料\01.数据资料\02.聊城年鉴数据 ...

  7. Generate a Certificate Signing Request (CSR) in macOS Keychain Access

    macOS 10.14 (Mojave) 1. Open the Keychain Access application, located at /Applications/Utilities/Key ...

  8. LeetCode 108. Convert Sorted Array to Binary Search Tree (将有序数组转换成BST)

    108. Convert Sorted Array to Binary Search Tree Given an array where elements are sorted in ascendin ...

  9. sublime text 文件列表如何忽略特定格式的文件名

    1.只需要Preferences (中文首选项)里面找到setting-default(设置默认)     2.在设置面板里面找到 "folder_exclude_patterns" ...

  10. java导出pdf功能记录

    这几天已在做处理导出pdf文件的功能,摸索了几天总算可以了.记录下这几天遇到的问题. 1.网上基本都是基于Itext5和Itext7来处理的.我最终是在Itext5上成功了,itext7应该是模板出问 ...