---恢复内容开始---

一、filter函数

filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。

该接收两个参数,第一个为函数,第二个为序列,对序列中每个元素进行for循环,然后将每个元素传递给第一个位置的函数,然后返回 True 或 False,最后将返回 True 的元素放到新列表中

1、使用for循环将前面包含sb的文本过滤出来,

moive_people = ['sb_alex','sb_wupeiqi','yuanhao','sb_lihaifeng']

def filter_test(array):
ret = []
for p in array:
if not p.startswith("sb"):
ret.append(p)
return ret
print(filter_test(moive_people)) #['yuanhao']

2、将后面包含sb的文本过滤出来,如果还按照上面的方法写就显得很麻烦,而且代码重复,可以将for循环的主体部分使用函数定义独立出来,方便后续进行代码维护

 moive_people = ['alex_sb','sb_wupeiqi_sb','yuanhao','sb_lihaifeng_sb']
def sb_show(n):
return n.endswith('sb')
def filter_test(func,array):
ret = []
for p in array:
if not func(p):
ret.append(p)
return ret
print(filter_test(sb_show,moive_people)) #['yuanhao']

备注:在上面的代码中,我将p.endswith()预先定义函数,然后后续直接调用函数,如果还有变化,只需要使用函数定义出来,然后直接调用;

3、对2的函数进行优化,将预先定义的sb_show函数使用lambda匿名函数进行替换,减少代码数量

 def filter_test(func,array):
ret = []
for p in array:
if not func(p):
ret.append(p)
return ret
print(filter_test(lambda n:n.endswith('sb'),moive_people))

4、filter函数

 moive_people = ['alex_sb','sb_wupeiqi_sb','yuanhao','sb_lihaifeng_sb']
#下面的结果是一个内存地址,如果要获取值,需要进行list
#<filter object at 0x0000026CB0A4FAC8>
print(filter(lambda n:n.endswith('sb'),moive_people))
#['alex_sb', 'sb_wupeiqi_sb', 'sb_lihaifeng_sb']
print(list(filter(lambda n:n.endswith('sb'),moive_people)))
#['alex_sb', 'sb_wupeiqi_sb', 'sb_lihaifeng_sb']
res= filter(lambda n:n.endswith('sb'),moive_people)
print(list(res))

二、reduce函数

reduce() 函数会对参数序列中元素进行累积。

函数将一个数据集合(链表,元组等)中的所有数据进行下列操作:用传给 reduce 中的函数 function(有两个参数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,最后得到一个结果

1、采用for循环的方法进行实现

 num1 = range(1,101)
res= 0
for i in num1:
res = res+i print(res) #5050

2、使用函数的方式进行实现

 num1 = range(1,101)
def reduce_test(array): res= 0
for i in array:
res = res+i
return(res)
print(reduce_test(num1)) #

3、对序列中的每个元素进行乘积

 num1 = range(1,6)
def mul(x,y):
return x*y
def reduce_test(func,array):
res =1
for i in array:
res = func(res,i)
return res
print(reduce_test(mul,num1))

4、对3函数进行优化

 def reduce_test(func,array):
res =1
for i in array:
res = func(res,i)
return res
print(reduce_test(lambda x,y:x*y,num1))

5、对4函数进行优化,对函数增加一个默认参数

 num1 = [1,2,3,4,5,6]
# def mul(x,y):
# return x*y
def reduce_test(func,array,init=None):
if init is None:
res = array.pop(0)
else:
res= init
for i in array:
print(i)
res = func(res,i)
return res
print(reduce_test(lambda x,y:x*y,num1,100))

6、reduce函数

 from functools import reduce
num1 = [1,2,3,4,5,6] print(reduce(lambda x,y:x+y,num1,1)) #
print(reduce(lambda x,y:x*y,num1,10)) #
print(reduce(lambda x,y:x/y,num1,100)) #0.1388888888888889

三、map函数

对序列中元素进行for循环,然后对每个元素进行逻辑处理

1、对列表中的元素进行平方处理

 num1 = [1,2,3,4,5,6]
ret= []
for i in num1:
ret.append(i**2)
print(ret)

2、对列表中的元素进行自增加1处理

 num1 = [1,2,3,4,5,6]
ret= []
for i in num1:
ret.append(i+1)
print(ret)

3、使用函数方式进行处理

 num1 = [1,2,3,4,5,6]
def map_test(array):
res =[]
for i in array:
res.append(i+1)
return res
print(map_test(num1)) #[2, 3, 4, 5, 6, 7]

4、对3函数进行优化,将for循环的主体代码部分预先使用函数进行定义

 num1 = [1,2,3,4,5,6]
def reduce_one(x):
return x+1
def map_test(func,array):
res =[]
for i in array:
res.append(func(i))
return res
print(map_test(reduce_one,num1)) #[2, 3, 4, 5, 6, 7]

如果需求有其他变化,只需要对将函数定义出来,然后进行调用就可以了

5、对4函数进行优化,使用lambda函数进行代替

 num1 = [1,2,3,4,5,6]
# def reduce_one(x):
# return x+1
def map_test(func,array):
res =[]
for i in array:
res.append(func(i))
return res
print(map_test(lambda x:x+1,num1)) #[2, 3, 4, 5, 6, 7]

6、map函数

 num1 = [1,2,3,4,5,6]
print(map(lambda x:x+1,num1)) #<map object at 0x0000025C4059F908>
print(list(map(lambda x:x+1,num1))) #[2, 3, 4, 5, 6, 7]

---恢复内容结束---

一、filter函数

filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回由符合条件元素组成的新列表。

该接收两个参数,第一个为函数,第二个为序列,对序列中每个元素进行for循环,然后将每个元素传递给第一个位置的函数,然后返回 True 或 False,最后将返回 True 的元素放到新列表中

1、使用for循环将前面包含sb的文本过滤出来,

moive_people = ['sb_alex','sb_wupeiqi','yuanhao','sb_lihaifeng']

def filter_test(array):
ret = []
for p in array:
if not p.startswith("sb"):
ret.append(p)
return ret
print(filter_test(moive_people)) #['yuanhao']

2、将后面包含sb的文本过滤出来,如果还按照上面的方法写就显得很麻烦,而且代码重复,可以将for循环的主体部分使用函数定义独立出来,方便后续进行代码维护

 moive_people = ['alex_sb','sb_wupeiqi_sb','yuanhao','sb_lihaifeng_sb']
def sb_show(n):
return n.endswith('sb')
def filter_test(func,array):
ret = []
for p in array:
if not func(p):
ret.append(p)
return ret
print(filter_test(sb_show,moive_people)) #['yuanhao']

备注:在上面的代码中,我将p.endswith()预先定义函数,然后后续直接调用函数,如果还有变化,只需要使用函数定义出来,然后直接调用;

3、对2的函数进行优化,将预先定义的sb_show函数使用lambda匿名函数进行替换,减少代码数量

 def filter_test(func,array):
ret = []
for p in array:
if not func(p):
ret.append(p)
return ret
print(filter_test(lambda n:n.endswith('sb'),moive_people))

4、filter函数

 moive_people = ['alex_sb','sb_wupeiqi_sb','yuanhao','sb_lihaifeng_sb']
#下面的结果是一个内存地址,如果要获取值,需要进行list
#<filter object at 0x0000026CB0A4FAC8>
print(filter(lambda n:n.endswith('sb'),moive_people))
#['alex_sb', 'sb_wupeiqi_sb', 'sb_lihaifeng_sb']
print(list(filter(lambda n:n.endswith('sb'),moive_people)))
#['alex_sb', 'sb_wupeiqi_sb', 'sb_lihaifeng_sb']
res= filter(lambda n:n.endswith('sb'),moive_people)
print(list(res))

二、reduce函数

reduce() 函数会对参数序列中元素进行累积。

函数将一个数据集合(链表,元组等)中的所有数据进行下列操作:用传给 reduce 中的函数 function(有两个参数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,最后得到一个结果

1、采用for循环的方法进行实现

 num1 = range(1,101)
res= 0
for i in num1:
res = res+i print(res) #5050

2、使用函数的方式进行实现

 num1 = range(1,101)
def reduce_test(array): res= 0
for i in array:
res = res+i
return(res)
print(reduce_test(num1)) #

3、对序列中的每个元素进行乘积

 num1 = range(1,6)
def mul(x,y):
return x*y
def reduce_test(func,array):
res =1
for i in array:
res = func(res,i)
return res
print(reduce_test(mul,num1))

4、对3函数进行优化

 def reduce_test(func,array):
res =1
for i in array:
res = func(res,i)
return res
print(reduce_test(lambda x,y:x*y,num1))

5、对4函数进行优化,对函数增加一个默认参数

 num1 = [1,2,3,4,5,6]
# def mul(x,y):
# return x*y
def reduce_test(func,array,init=None):
if init is None:
res = array.pop(0)
else:
res= init
for i in array:
print(i)
res = func(res,i)
return res
print(reduce_test(lambda x,y:x*y,num1,100))

6、reduce函数

 from functools import reduce
num1 = [1,2,3,4,5,6] print(reduce(lambda x,y:x+y,num1,1)) #
print(reduce(lambda x,y:x*y,num1,10)) #
print(reduce(lambda x,y:x/y,num1,100)) #0.1388888888888889

三、map函数

对序列中元素进行for循环,然后对每个元素进行逻辑处理

1、对列表中的元素进行平方处理

 num1 = [1,2,3,4,5,6]
ret= []
for i in num1:
ret.append(i**2)
print(ret)

2、对列表中的元素进行自增加1处理

 num1 = [1,2,3,4,5,6]
ret= []
for i in num1:
ret.append(i+1)
print(ret)

3、使用函数方式进行处理

 num1 = [1,2,3,4,5,6]
def map_test(array):
res =[]
for i in array:
res.append(i+1)
return res
print(map_test(num1)) #[2, 3, 4, 5, 6, 7]

4、对3函数进行优化,将for循环的主体代码部分预先使用函数进行定义

 num1 = [1,2,3,4,5,6]
def reduce_one(x):
return x+1
def map_test(func,array):
res =[]
for i in array:
res.append(func(i))
return res
print(map_test(reduce_one,num1)) #[2, 3, 4, 5, 6, 7]

如果需求有其他变化,只需要对将函数定义出来,然后进行调用就可以了

5、对4函数进行优化,使用lambda函数进行代替

 num1 = [1,2,3,4,5,6]
# def reduce_one(x):
# return x+1
def map_test(func,array):
res =[]
for i in array:
res.append(func(i))
return res
print(map_test(lambda x:x+1,num1)) #[2, 3, 4, 5, 6, 7]

6、map函数

 num1 = [1,2,3,4,5,6]
print(map(lambda x:x+1,num1)) #<map object at 0x0000025C4059F908>
print(list(map(lambda x:x+1,num1))) #[2, 3, 4, 5, 6, 7]

四、其他内置函数

1、zip函数

zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表。zip函数的作用类似于拉链

 print(list(zip(('张三'),(1,2))))#[('张', 1), ('三', 2)]
print(zip(('张三'),(1,2))) #<zip object at 0x00000230F8D54B88>
#[('M', 1), ('y', 2), (' ', 3)]
print(list(zip(('My name is zhangsan'),(1,2,3))))
print(list(zip(('My'),(1,2,3,4)))) #[('M', 1), ('y', 2)] ###使用zip函数将字典中的key与value值一一对应
p = {'name':'alex','age':18,'gender':'none'}
print(p.keys()) #dict_keys(['name', 'age', 'gender'])
print(p.values()) #dict_values(['alex', 18, 'none'])
print(list(p.keys())) #['name', 'age', 'gender']
print(list(p.values())) #['alex', 18, 'none']
#[('name', 'alex'), ('age', 18), ('gender', 'none')]
print(list(zip(p.keys(),p.values())))
print(zip(p.keys(),p.values())) #<zip object at 0x0000027B47A84F48>

2、max、min函数

(1)、单纯数字的比较

 l3 = [12,34,130,-1,44]
print(max(l3)) #
print(min(l3))#-1

(2)、字典的比较

 age_dict = {'age1':18,'age3':30,'age4':87}
#求出年龄最大的
print(max(age_dict.values())) #
#默认比较key值
print(max(age_dict))
#求出年龄最大的keys与values print(list(max(zip(age_dict.values(),age_dict.keys())))) #[87, 'age4']
 l = [
(1,'a'),
(2,'b'),
(3,'e'),
(5,'f')
]
print(max(l)) l1 = ['a10','b13','d13']
print(list(max(l1))) #['d', '1', '3'] # l2 = ['a10','b13','d13',10]
# #TypeError: '>' not supported between instances of 'int' and 'str'
# print(list(max(l2)))

3、chr、ord函数

 # print(chr(97)) #a,chr的作用是将数字在ascii码表中的值显示出来
# print(ord('c')) #99
# print(chr(33)) #! ascii码表中的33对应的值为'!'

4、pow函数

 print(pow(2,3))  #2**3
print(pow(2,3,2)) #2**3%2

5、reversed 反转

6、round四舍五入

7、set()转换为集合

8、slice() 切片

 l = 'hello'
print(l[2:5])
s= slice(3,5)
s1 = slice(1,4,2)
print(s)

9、sorted 排序

10、str

11、type

12、vars

13、__imprort__

14、eval

###将字符串中的结构给提取出来
str_1 = "1+2*(5-1)-20/5"
print(eval(str_1))
str_2 = "{'k1':'1234','k2':'张三'}"
print(eval(str_2))

15、hash

可hash的数据类型即为不可变数据类型,不可hash的数据类型即可变数据类型;

hash是一种算法、算法结构;

hash特性:

不管传入的参数多大,计算的hash值长度是不变的;

不能根据hash值去反推原参数;

变量不变hash值不变;

name = "zhangsan"
print(hash(name)) #-6633503532806232964
print(hash(name)) #-6633503532806232964
print(hash(name)) #-6633503532806232964
name = "张三"
print(hash(name)) #247632540932985384

16、bytes

17、encoding、decode

18、divmod

19、bin、hex、oct

print(bin(32)) #十进制转二进制
print(hex(32)) #十进制转16进制
print(oct(32)) #十进制转8进制
"""
输出结果
0b100000
0x20
0o40
"""

20、globals、local

												

python之函数filter、reduce的更多相关文章

  1. Python 内置模块函数filter reduce

    1.filter()实现过滤的功能 2.reduce()对序列中元素的连续操作可以通过循环来处理 3.map()对tuple元组进行解包操作,调用时设置map()的第一个参数为None 4.使用red ...

  2. Python中Lambda, filter, reduce and map 的区别

    Lambda, filter, reduce and map Lambda Operator Some like it, others hate it and many are afraid of t ...

  3. python基础--内置函数filter,reduce

    movie_people=["sb+_alex","sb_wupeiqi","han"] # def filter_test(array): ...

  4. Python中map,filter,reduce,zip的应用

    事例1: l=[('main', 'router_115.236.xx.xx', [{'abc': 1}, {'dfg': 1}]), ('main', 'router_183.61.xx.xx', ...

  5. Python高级函数--map/reduce

    名字开头大写 后面小写:练习: def normalize(name): return name[0].upper() + name[1:].lower() L1 = ['adam', 'LISA', ...

  6. Python高级函数--filter

    def is_palindrome(n): return str(n) == str(n)[::-1] #前两个‘:’表示整个范围,‘-’表示从后面,‘1’表示数据间隔 output = filter ...

  7. 【python】函数filter、map

  8. Python【map、reduce、filter】内置函数使用说明(转载)

    转自:http://www.blogjava.net/vagasnail/articles/301140.html?opt=admin 介绍下Python 中 map,reduce,和filter 内 ...

  9. Python 函数式编程 & Python中的高阶函数map reduce filter 和sorted

    1. 函数式编程 1)概念 函数式编程是一种编程模型,他将计算机运算看做是数学中函数的计算,并且避免了状态以及变量的概念.wiki 我们知道,对象是面向对象的第一型,那么函数式编程也是一样,函数是函数 ...

随机推荐

  1. mvc5 源码解析1:UrlRoutingModule

    注册在C:\Windows\Microsoft.NET\Framework\v2.0.50727\CONFIG \webconfig中 在该module源码中 我们可以看出注册了application ...

  2. Vertx上传 官网Demo Java版

    package io.vertx.example.web.upload; import io.vertx.core.AbstractVerticle; import io.vertx.example. ...

  3. jQuery AJAX方法详谈

    AJAX是与服务器交换数据并更新部分网页的技术,而无需重新加载整个页面. 下表列出了所有jQuery AJAX方法: 方法 描述 $.ajax() 执行异步AJAX请求 $.ajaxPrefilter ...

  4. npm和cnpm命令后无响应

    问题: 1.把前端环境配制完毕之后,打开项目,输入cnpm install之后,光标一直在另起一行的位置闪,但是丝毫没有在安装的迹象. 2.打开cmd,在窗体中输入node -v 可以显示版本,但是输 ...

  5. vue学习指南:第七篇(详细) - Vue的 组件通信

    Vue 的 父传子 子传父 一.父组件向子组件传值: 父传子 把需要的数据 传递给 子组件,以数据绑定(v-bind)的形式,传递到子组件内部,供子组件使用  缩写是(:) 1.创建子组件,在src/ ...

  6. [20190505]ts 命令在哪里.txt

    [20190505]ts 命令在哪里.txt --//在论坛问一下ts命令在哪里?没人解答,自己也google看了一下:https://unix.stackexchange.com/questions ...

  7. 白话SCRUM 之四:燃尽图

    Burn down chart翻译为燃尽图或燃烧图,很形象,是Scrum中展示项目进展的一个指示器.我一直认为用户故事.每日站立会议.燃尽图.sprint review.sprint retrospe ...

  8. kolla-ansible部署openstack allinone单节点

    环境准备 2 network interfaces 8GB main memory 40GB disk space 1.修改hostname hostnamectl set-hostname koll ...

  9. 安装教程-VMware 12 安装企业级 CentOS 7.6

    企业级 CentOS 7.6 系统的安装 1.实验描述 在虚拟机中,手动安装 CentOS 7.6 操作系统,为学习 Linux 提供平台,因此,有的参数有些差异,请勿较真. 2.实验环境 物理机系统 ...

  10. 第16节_BLE协议GAP层

    学习资料:官方手册 Vol 3: Core System Package [Host volume] Part C: Generic Access Profile 下面这个图是BLE协议各层跟医院的各 ...