《Interest Rate Risk Modeling》阅读笔记——第四章:M-absolute 和 M-square 风险度量
目录
第四章:M-absolute 和 M-square 风险度量

思维导图
从第四章开始比较难了
\(M^A\) 和 \(M^2\) 控制了组合预期变化的下限

两个重要不等式的推导
首先有
\[
V_0 = \sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f(s)ds}
\]
令
\[
\begin{aligned}
V_H &= V_0 e^{\int_0^H f(s)ds}\\
&= \sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f(s)ds} e^{\int_0^H f(s)ds}\\
&= \sum_{t=t_1}^{t_n} CF_t e^{\int_t^H f(s)ds}
\end{aligned}
\]
以及
\[
V_H^{\prime} = \sum_{t=t_1}^{t_n} CF_t e^{\int_t^H f^{\prime}(s)ds}
\]
那么
\[
\begin{aligned}
\frac{V_H^{\prime} - V_H}{V_H} &=
\frac{1}{V_0 e^{\int_0^H f(s)ds}}
\sum_{t=t_1}^{t_n} CF_t (e^{\int_t^H f^{\prime}(s)ds} - e^{\int_t^H f(s)ds})\\
&=\frac{1}{V_0}\sum_{t=t_1}^{t_n} CF_t[e^{\int_t^H f(s)ds}(e^{\int_t^H \Delta f(s)ds}-1)]e^{-\int_0^H f(s)ds}\\
&=\frac{1}{V_0}\sum_{t=t_1}^{t_n} CF_te^{-\int_0^t f(s)ds}(e^{\int_t^H \Delta f(s)ds}-1)
\end{aligned}
\]
记
\[
h(t) = \int_t^H \Delta f(s)ds
\]
关于 \(M^A\) 的不等式
\(\Delta f(t)\) 的边界分别是 \(K_1\) 和 \(K_2\),即 \(K_1 \le \Delta f(t) \le K_2\)
若 \(H>t\) 时
\[
h(t) \ge K_1(H-t) = K_1 |t-H|
\]
若 \(H \le t\) 时
\[
h(t) \ge -K_2(t-H) = -K_2|t-H|
\]
于是
\[
h(t) \ge \min(K_1, -K_2)|t-H|
\]
而
\[
\begin{aligned}
\min (K_1, -K_2) &= -\max(-K_1, K_2)\\
&\ge -\max(|K_1|, |K_2|)\\
&=-K_3
\end{aligned}
\]
则
\[
h(t) \ge -K_3|t-H|
\]
已知
\[
e^x - 1 \ge x
\]
那么
\[
\begin{aligned}
\frac{V_H^{\prime} - V_H}{V_H} & =\frac{1}{V_0}\sum_{t=t_1}^{t_n} CF_te^{-\int_0^t f(s)ds}(e^{\int_t^H \Delta f(s)ds}-1)\\
& \ge \frac{1}{V_0}\sum_{t=t_1}^{t_n} CF_te^{-\int_0^t f(s)ds}h(t)\\
& \ge \frac{1}{V_0}\sum_{t=t_1}^{t_n} CF_te^{-\int_0^t f(s)ds} (-K_3|t-H|)\\
& = -K_3M^A
\end{aligned}
\]
关于 \(M^2\) 的不等式
记
\[
\frac{d\Delta f(t)}{dt} = g(t) \le K_4
\]
那么
\[
\begin{aligned}
h(t) &= \int_t^H \Delta f(s)ds\\
& = t\Delta f(t)|_{t}^{H} - \int_t^H s g(s)ds\\
& = H\Delta f(H) - t\Delta f(t) - \int_t^H s g(s)ds\\
& = (H-t)\Delta f(H) + t\Delta f(H) - t\Delta f(t) - \int_t^H s g(s)ds\\
& = (H-t)\Delta f(H) + t\int_t^H g(s)ds - \int_t^H s g(s)ds\\
& = (H-t)\Delta f(H) + \int_t^H(t-s) g(s)ds\\
\end{aligned}
\]
若 \(H>t\) 时
\[
\begin{aligned}
\int_t^H (t-s) g(s)ds & \ge \int_t^H (t-s) K_4ds\\
&=-K_4(t-H)^2/2
\end{aligned}
\]
若 \(H \le t\) 时
\[
\begin{aligned}
\int_t^H (t-s) g(s)ds & = -\int_H^t (t-s) g(s)ds\\
& \ge -\int_H^t (t-s) K_4ds\\
& = -K_4(t-H)^2/2
\end{aligned}
\]
那么
\[
h(t) \ge (H-t)\Delta f(H) -K_4(t-H)^2/2
\]
已知
\[
e^x - 1 \ge x
\]
那么
\[
\begin{aligned}
\frac{V_H^{\prime} - V_H}{V_H} & =\frac{1}{V_0}\sum_{t=t_1}^{t_n} CF_te^{-\int_0^t f(s)ds}(e^{\int_t^H \Delta f(s)ds}-1)\\
& \ge \frac{1}{V_0}\sum_{t=t_1}^{t_n} CF_te^{-\int_0^t f(s)ds}h(t)\\
& \ge \frac{1}{V_0}\sum_{t=t_1}^{t_n} CF_te^{-\int_0^t f(s)ds} \left((H-t)\Delta f(H) -K_4(t-H)^2/2\right)\\
& = (H-D)\Delta f(H) -K_4M^2/2
\end{aligned}
\]
凸性效应(CE)和风险效应(RE)的推导
\[
\begin{aligned}
R(H) &= \frac{V_H^{\prime} - V_0}{V_0}\\
&=\frac{\sum_{t=t_1}^{t_n} CF_t e^{\int_t^H f^{\prime}(s)ds}}{\sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f(s)ds}} - 1\\
&=\frac{\sum_{t=t_1}^{t_n} CF_t e^{\int_0^H f^{\prime}(s)ds - \int_0^t f^{\prime}(s)ds}}{\sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f(s)ds}} - 1\\
&=\frac{e^{\int_0^H f^{\prime}(s)ds}\sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f(s)ds}e^{-\int_0^t \Delta f(s)ds}}{\sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f(s)ds}} - 1\\
&=\frac{e^{\int_0^H f(s) + \Delta f(s)ds}\sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f(s)ds}e^{-\int_0^t \Delta f(s)ds}}{\sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f(s)ds}} - 1\\
&=\frac{e^{\int_0^H f(s)}\sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f(s)ds}e^{\int_t^H \Delta f(s)ds}}{\sum_{t=t_1}^{t_n} CF_t e^{-\int_0^t f(s)ds}} - 1\\
\end{aligned}
\]
令
\[
R_F(H) = e^{\int_0^H f(s)ds} - 1
\]
记
\[
k(t) = e^{\int_t^H \Delta f(s)ds}
\]
对 \(k(t)\) 在 \(H\) 做 Taylor 展开
\[
\begin{aligned}
k(t) &= e^{\int_t^H \Delta f(s)ds}\\
&= e^{-\int_H^t \Delta f(s)ds}\\
&= k(H) + (t-H)k'(H) + \frac{1}{2}(t-H)^2k''(H) + \varepsilon\\
&= 1 + (t-H)(-\Delta f(H)) + \frac{1}{2}(t-H)^2(\Delta f(H)^2 - \frac{d(\Delta f(t))}{dt}|_{t=H}) + \varepsilon\\
&= 1 + (t-H)(-\Delta f(H)) + \frac{1}{2}(t-H)^2(\Delta f(H)^2 - g(H)) + \varepsilon\\
\end{aligned}
\]
代入得到
\[
\begin{aligned}
R(H) &= R_F(H) + \gamma_1 (D-H) + \gamma_2 M^2 + \varepsilon\\
\gamma_1 &= -\Delta f(H)(1+R_F(H))\\
\gamma_2 &= \frac{1}{2}(1+R_F(H))(\Delta f(H)^2 - g(H))\\
\gamma_2 &= CE - RE\\
CE &= \frac{1}{2}(1+R_F(H))\Delta f(H)^2\\
RE &= \frac{1}{2}(1+R_F(H))g(H)
\end{aligned}
\]
《Interest Rate Risk Modeling》阅读笔记——第四章:M-absolute 和 M-square 风险度量的更多相关文章
- 《图解HTTP》阅读笔记--第四章--HTTP状态码
第四章.返回结果的HTTP状态码前言:状态码的职责是告诉用户服务器端描述返回的请求,以便用户判断服务器处理是否正常. 状态码由三位数字和原因短语组成,其中三位数字的首位指定了响应类别:---1xx 接 ...
- 《Interest Rate Risk Modeling》阅读笔记——第五章:久期向量模型
目录 第五章:久期向量模型 思维导图 久期向量的推导 久期向量 广义久期向量 一些想法 第五章:久期向量模型 思维导图 久期向量的推导 \[ V_0 = \sum_{t=t_1}^{t_n} CF_t ...
- 《Interest Rate Risk Modeling》阅读笔记——第三章:拟合期限结构
目录 第三章:拟合期限结构 思维导图 扩展 第三章:拟合期限结构 思维导图 扩展 NS 模型的变种
- 《Interest Rate Risk Modeling》阅读笔记——第二章:债券价格、久期与凸性
目录 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子 第二章:债券价格.久期与凸性 思维导图 瞬时回报率-收益率的例子
- 《Interest Rate Risk Modeling》阅读笔记——第一章:利率风险建模概览
目录 第一章:利率风险建模概览 思维导图 一些想法 第一章:利率风险建模概览 思维导图 一些想法 久期向量模型类似于研究组合收益的高阶矩. 久期向量模型用的是一般多项式表达高阶久期,试试正交多项式? ...
- 《Interest Rate Risk Modeling》阅读笔记——第八章:基于 LIBOR 模型用互换和利率期权进行对冲
目录 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在重置日(reset date)的价格 第八章:基于 LIBOR 模型用互换和利率期权进行对冲 思维导图 推导浮息债在 ...
- 《Interest Rate Risk Modeling》阅读笔记——第九章:关键利率久期和 VaR 分析
目录 第九章:关键利率久期和 VaR 分析 思维导图 一些想法 有关现金流映射技术的推导 第九章:关键利率久期和 VaR 分析 思维导图 一些想法 在解关键方程的时候施加 \(L^1\) 约束也许可以 ...
- 《Interest Rate Risk Modeling》阅读笔记——第十章 主成分模型与 VaR 分析
目录 第十章:主成分模型与 VaR 分析 思维导图 一些想法 推导 PCD.PCC 和 KRD.KRC 的关系 PCD 和 KRD PCC 和 KRC 第十章:主成分模型与 VaR 分析 思维导图 一 ...
- 《深入理解Linux内核》阅读笔记 --- 第四章 中断和异常
1.中断的作用:中断信号提供了一种方式,使处理器转而去运行正常控制流之外的代码.当一个中断信号到达时,CPU必须停止它当前所做的事,并切换到一个新的活动.为了做到这一点,就要在内核态堆栈保存程序计数器 ...
随机推荐
- C# Task,new Task().Start(),Task.Run();TTask.Factory.StartNew
1. Task task = new Task(() => { MultiplyMethod(a, b); }); task.Start(); 2. Task task = Task.Run(( ...
- ASP.NET Core 发布到Linux需要注意的地方
此文持续更新. 读取本地目录的问题, 在windows下,一般会用“\”,但在Linux中用的是“/” 待续..
- Python requests库的使用(一)
requests库官方使用手册地址:http://www.python-requests.org/en/master/:中文使用手册地址:http://cn.python-requests.org/z ...
- Linux命令行基本数据库语句
-- 数据库的操作 -- 链接数据库 mysql -uroot -p mysql -uroot -pmysql -- 退出数据库 exit/quit/ctrl+d -- sql语句最后需要有分号;结尾 ...
- webpack4 babel 篇
demo 代码点此,如果对 babel 不熟,可以看一下babel 7 简单指北. webpack 使用 babel 来打包使用 es6 及以上语法的 js 文件是非常方便的,可以通过配置,将 es6 ...
- maven 学习---使用Maven构建项目
要构建一个基于Maven的项目,打开控制台,进入到 pom.xml 文件所放的项目文件夹,并发出以下命令: mvn package 这将执行Maven的“package”阶段. Maven构建生命周期 ...
- pid相关命令
pidof 查找正在运行进程的进程号(pid)的工具 pidof - find the process ID of a running program 参数: -s 表示只返回1个 pid -x 表示 ...
- 019.nexus搭建docker镜像仓库/maven仓库
一.安装docker CE 参考docker doc https://docs.docker.com/install/linux/docker-ce/centos/ 二.docker启动nexus3 ...
- vue全家桶项目应用断断续续的记录
一.引用axios插件报错 axios使用文档 Cannot read property 'protocol' of undefined 解决方法:在mainjs文件中把axios引入vue的原型函数 ...
- GCN 简单numpy实现
`#参考:https://blog.csdn.net/weixin_42052081/article/details/89108966 import numpy as np import networ ...