【CFGym102059G】Fascination Street(思维DP)
大致题意: 有\(n\)个路灯,每个路灯有一定的建造费用,且建成后可照亮自身及周围距离为\(1\)的两个格子。你可以交换\(k\)次两个路灯的建造费用,求照亮所有格子的最小费用。
题意转换
首先可以发现交换显然是一个有后效性的操作,难以记录到状态中。
但是\(k\)这么小似乎别有深意?
考虑我们把一次交换分裂成两个操作,即在某一无需建路灯的位置额外建了一个路灯,和在某一需建路灯的位置免费建了一个路灯。
这样就容易\(DP\)了。
动态规划
考虑先把费用都向右移一位,再把第一个位置的费用设为\(INF\),这样一来,每个位置建路灯,就变成了影响包括其在内的前\(3\)个位置,这样就好处理多了。
我们设\(f_{i,j,t,0\sim3}\)表示当前在第\(i\)个位置,额外建了\(j\)个路灯,免费建了\(t\)个路灯,上一个路灯建在到\(i\)距离为\(0\sim3\)的位置时的最小花费。
则转移时就要根据第四维是否为\(0\)来分开处理了。
当第四维为\(0\)时,说明在当前位置建了一个路灯,则有两种情况:花钱建了一个或免费建了一个。
当第四维非\(0\)时,说明在当前位置没有建路灯,或者额外建了一个路灯。
具体实现可以详见代码。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 250000
#define K 9
#define LL long long
#define Gmin(x,y) (x>(y)&&(x=(y)))
#define INF 1e18
using namespace std;
int n,k;LL a[N+5],f[N+5][K+1][K+1][4];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
char c,*A,*B,FI[FS];
public:
I FastIO() {A=B=FI;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
}F;
int main()
{
RI i,j,t,w;LL ans=INF;for(F.read(n,k),i=1;i<=n;++i) F.read(a[i+1]);a[1]=INF;//读入,将花费右移一位
for(i=0;i<=k;++i) for(j=0;j<=k;++j) for(t=0;t<=3;++t) f[0][i][j][t]=INF;f[0][0][0][0]=0;//初始化
for(i=1;i<=n+1;++i) for(j=0;j<=k;++j) for(t=0;t<=k;++t)
{
for(w=1;w<=3;++w) f[i][j][t][w]=f[i-1][j][t][w-1];//不建路灯
f[i][j][t][0]=min(f[i][j][t][1],min(f[i][j][t][2],f[i][j][t][3]))+a[i],//花钱建路灯
t&&Gmin(f[i][j][t][0],min(f[i][j][t-1][1],min(f[i][j][t-1][2],f[i][j][t-1][3])));//免费建路灯
for(w=1;w<=3;++w) j&&Gmin(f[i][j][t][w],f[i-1][j-1][t][w-1]+a[i]);//额外建路灯
}
for(i=0;i<=k;++i) Gmin(ans,min(f[n][i][i][0],min(f[n+1][i][i][0],f[n+1][i][i][1])));//统计答案
return printf("%lld",ans),0;//输出答案
}
【CFGym102059G】Fascination Street(思维DP)的更多相关文章
- T2960 全民健身【思维Dp,预处理,差分优化】
Online Judge:YCJSOI Label:Dp,思维题,预处理,滚动优化 题目描述 乐乐现在掌管一个大公司,办公楼共有n层.为了增加员工的身体素质,他决定在每层楼都建立一个活动室,活动室分乒 ...
- 【做题】CSA49F - Card Collecting Game——思维&dp
原文链接 https://www.cnblogs.com/cly-none/p/CSA49F.html 题意:Alice和Bob在玩游戏.有\(n\)种卡牌,每种卡牌有\(b_i\)张,保证\(\su ...
- 牛客练习赛40 A 小D的剧场 (思维dp)
链接:https://ac.nowcoder.com/acm/contest/369/A 题目描述 若你摘得小的星星 你将得到小的幸福 若你摘得大的星星 你将得到大的财富 若两者都能摘得 你将得到 ...
- Codeforces Round #533 (Div. 2) C.思维dp D. 多源BFS
题目链接:https://codeforces.com/contest/1105 C. Ayoub and Lost Array 题目大意:一个长度为n的数组,数组的元素都在[L,R]之间,并且数组全 ...
- Queue CodeForces - 353D (思维dp)
https://codeforces.com/problemset/problem/353/D 大意:给定字符串, 每一秒, 若F在M的右侧, 则交换M与F, 求多少秒后F全在M左侧 $dp[i]$为 ...
- codeforce——思维dp
Codeforces 822C Hacker, pack your bags!(思维) 题目大意:给你n个旅券,上面有开始时间l,结束时间r,和花费cost,要求选择两张时间不相交的旅券时间长度相 ...
- atcoder 2017Code festival C ——D题 Yet Another Palindrome Partitioning(思维+dp)
题目大意: 把一个字符串s分割成m个串,这m个串满足至多有一种字符出现次数为奇数次,其他均为偶数次,问m的最小值 题解: 首先我们想一下纯暴力怎么做 显然是可以n^2暴力的,然后dp[i]表示分割到i ...
- 【bzoj4976】宝石镶嵌(思维dp)
题目传送门:bzoj4976 不得不说这是道脑洞dp,思路真的清奇. 我们可以发现,虽然n很大,但是k只有100,这里面似乎隐藏了什么玄机. 我们可以发现,设总共有$ tot $个二进制位在这n个数中 ...
- 【洛谷5292】[HNOI2019] 校园旅行(思维DP)
点此看题面 大致题意: 给你一张无向图,每个点权值为\(0\)或\(1\),多组询问两点之间是否存在一条回文路径. 暴力\(DP\) 首先,看到\(n\)如此之小(\(n\le5000\)),便容易想 ...
随机推荐
- 动手学深度学习11- 多层感知机pytorch简洁实现
多层感知机的简洁实现 定义模型 读取数据并训练数据 损失函数 定义优化算法 小结 多层感知机的简洁实现 import torch from torch import nn from torch.nn ...
- tomcat正常运行一段时间后,突然访问不了项目了
前言 我将项目部署在tomcat服务器上,本来都是好好的,输入网站地址就能访问:但是第二天一早去就会发现网站访问提示404,文件无法找到:我就很懵了. 排查 1.我是用的是chrome浏览器,所以尝试 ...
- 【linux】glibc升级
glibc升级 步骤如下: 1.下载解压glibc wget http://ftp.gnu.org/gnu/glibc/glibc-2.18.tar.gz tar zxvf glibc-2.18.ta ...
- 【Zabbix】zabora批量部署
zabora简化批量部署 目的:简化部署zabora,批量监控数据库的常用指标 1 数据库用户赋权 上传cre_arp_monitor.sh,并且部署用户. [root@oradb ~]# chown ...
- Vue.js 源码分析(二) 基础篇 全局配置
Vue.config是一个对象,包含Vue的全局配置,可以在启动应用之前修改下列属性,如下: ptionMergeStrategies ;自定义合并策略的选项silent ...
- Disruptor系列(一)— disruptor介绍
本文翻译自Disruptor在github上的wiki文章Introduction,原文可以看这里. 一.前言 作为程序猿大多数都有对技术的执着,想在这个方面有所提升.对于优秀的事物保持积极学习的心态 ...
- SAP PI开发手册-ERP发布服务供外围系统调用(RFC类型)
1转自:https://www.cnblogs.com/fanjb/p/10677018.html 8年进入国网项目后陆陆续续做了一些接口,按实现方法去分有RFC和代理类sproxy类型,按服务提供方 ...
- SQL Server中使用SQL语句关闭数据库连接和删除数据库文件
有时候我们想用DROP DATABASE语句删除数据库和数据库文件,会删不掉,因为有其他人正在使用要删除的数据库,这里有一个方法可以强制断开其它数据库连接,再删除数据库. 假如我们要删除的数据库是[T ...
- vertx-mysql-client/java/
Reactive MySQL Client是MySQL的客户端,它具有直接的API,专注于可伸缩性和低开销. 特征 事件驱动 轻巧的 内置连接池 准备查询缓存 游标支持 行流 RxJava 1和RxJ ...
- CentOS7下配置防火墙放过Keepalived
Keepalived是一个轻量级的HA集群解决方案,但开启防火墙后各节点无法感知其它节点的状态,各自都绑定了虚拟IP.网上很多文章讲要配置防火墙放过tcp/112,在CentOS7下是无效的,正确的做 ...