【51Nod 1769】Clarke and math2

题面

51Nod

题解

对于一个数论函数\(f\),\(\sum_{d|n}f(d)=(f\times 1)(n)\)。

其实题目就是要求\(g=f\times 1^k\)。

考虑\(1^k(n)\)怎么求,因为\(1(n)\)是个积性函数,所以\(1^k(n)\)也是个积性函数。

我们考虑对于\(n\)的每个质因子\(p\)和它的次数\(r\),求出对应函数的值。

那么就相当于在每个不同的\(i_{j-1}\)及\(i_j\)中插入一个质因子,表示乘上\(p\)倍,也可以在同一个位置插。

那么根据排列组合,这个问题的答案就是\(k-1+r\choose r\),然后把每个质因数的贡献乘起来就是答案。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
const int Mod = 1e9 + 7;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = (10ll * data + ch - '0') % Mod, ch = getchar();
return w == 1 ? data : (-data + Mod) % Mod;
}
int fpow(int x, int y) {
int res = 1;
while (y) {
if (y & 1) res = 1ll * res * x % Mod;
x = 1ll * x * x % Mod;
y >>= 1;
}
return res;
}
const int MAX_N = 5e5 + 5;
int fac[25], ifc[25], C[25];
int N, K, f[MAX_N], g[MAX_N], h[MAX_N], cur[MAX_N]; int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
fac[0] = 1; for (int i = 1; i <= 20; i++) fac[i] = 1ll * i * fac[i - 1] % Mod;
ifc[20] = fpow(fac[20], Mod - 2);
for (int i = 19; ~i; i--) ifc[i] = 1ll * ifc[i + 1] * (i + 1) % Mod;
N = gi(), K = gi();
for (int i = 1; i <= N; i++) f[i] = gi(), g[i] = 1, cur[i] = i;
for (int i = 0; i <= 20; i++) {
int nw = (i + K - 1) % Mod; C[i] = ifc[i];
for (int j = 0; j < i; j++) C[i] = 1ll * C[i] * (nw - j + Mod) % Mod;
}
for (int i = 2; i <= N; i++) {
if (cur[i] == 1) continue;
for (int j = i; j <= N; j += i) {
int k = 0;
while (cur[j] % i == 0) ++k, cur[j] /= i;
g[j] = 1ll * g[j] * C[k] % Mod;
}
}
for (int i = 1; i <= N; i++)
for (int j = i; j <= N; j += i)
h[j] = (h[j] + 1ll * f[i] * g[j / i]) % Mod;
for (int i = 1; i <= N; i++) printf("%d ", h[i]);
putchar('\n');
return 0;
}

【51Nod 1769】Clarke and math2的更多相关文章

  1. 【51Nod1769】Clarke and math2(数论,组合数学)

    [51Nod1769]Clarke and math2(数论,组合数学) 题面 51Nod 题解 考虑枚举一个\(i_k\),枚举一个\(i\),怎么计算\(i_k\)对\(i\)的贡献. 把\(\f ...

  2. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  3. 【51Nod 1244】莫比乌斯函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...

  4. 【51Nod 1501】【算法马拉松 19D】石头剪刀布威力加强版

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1501 dp求出环状不连续的前缀和,剩下东西都可以算出来,比较繁琐. 时间 ...

  5. 【51Nod 1622】【算法马拉松 19C】集合对

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1622 简单题..直接暴力快速幂 #include<cstdio&g ...

  6. 【51Nod 1616】【算法马拉松 19B】最小集合

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1616 这道题主要是查询一个数是不是原有集合的一个子集的所有数的gcd. ...

  7. 【51Nod 1674】【算法马拉松 19A】区间的价值 V2

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1674 对区间分治,统计\([l,r]\)中经过mid的区间的答案. 我的 ...

  8. 【hdu 5628】Clarke and math (Dirichlet卷积)

    hdu 5628 Clarke and math 题意 Given f(i),1≤i≤n, calculate \(\displaystyle g(i) = \sum_{i_1 \mid i} \su ...

  9. 【51nod 1785】数据流中的算法

    Description 51nod近日上线了用户满意度检测工具,使用高级人工智能算法,通过用户访问时间.鼠标轨迹等特征计算用户对于网站的满意程度.   现有的统计工具只能统计某一个窗口中,用户的满意程 ...

随机推荐

  1. 大话设计模式Python实现-建造者模式

    建造者模式(Builder Pattern):将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示 下面是一个建造者模式的demo #!/usr/bin/env python # ...

  2. 后端必备的 Git 分支开发规范指南 转

    原文链接 作者:稻草叔叔 http://juejin.im/post/5b4328bbf265da0fa21a6820 点击上方 "后端技术精选",选择 "置顶公众号&q ...

  3. Gitlab 部署汉化及邮件配置

    Gitlab 简介 Gitlab 是一个基于git私有代码管理的服务集成. Nginx:静态web服务器. gitlab-shell:用于处理Git命令和修改authorized keys列表. gi ...

  4. 【UOJ#389】【UNR#3】白鸽(欧拉回路,费用流)

    [UOJ#389][UNR#3]白鸽(欧拉回路,费用流) 题面 UOJ 题解 首先第一问就是判断是否存在一条合法的欧拉回路,这个拿度数和连通性判断一下就行了. 第二问判断转的圈数,显然我们只需要考虑顺 ...

  5. linq,创建数据库,插入数据,newDB.CreateDatabase();newDB.tb2.InsertOnSubmit(stu); newDB.SubmitChanges();

    using System.Data.Linq;using System.Data.Linq.Mapping; namespace ConsoleApplication1388{ class Progr ...

  6. 部署 asp.net 网站到 Azure

    部署asp.net网站到Azure 前言 前些天一直在写一个单页面web应用程序,终于完成了,于是考虑发布到云服务器.本人没有AWS账号,遂本打算使用谷歌云.参考文档后发现官方文档给出的方式为在vis ...

  7. python安装扩展”unable to find vcvarsall.bat“的解决办法

    产生原因: python3.4用的是msvs2010编译的,所以python3.4默认只能认出msvs2010以上版本 python2.7用的是msvs2008编译的,所以python2.7默认只能认 ...

  8. Celery 异步队列

    Celery Celery是一个功能完备即插即用的异步任务队列系统.它适用于异步处理问题,当发送邮件.或者文件上传, 图像处理等等一些比较耗时的操作,我们可将其异步执行,这样用户不需要等待很久,提高用 ...

  9. DesignPattern系列__07合成复用原则

    基本介绍 合成复用原则的核心,就是尽量去使用组合.聚合等方式,而不是使用继承. 核心思想 1.找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起. 2.针对接口编程,而不是 ...

  10. wsl下安装并运行Kafka

    0.引言 kafka是一个高性能分布式的MQ,今天我们就来玩玩 1.安装 wget http://mirrors.tuna.tsinghua.edu.cn/apache/kafka/2.3.0/kaf ...