题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?

problemId=5381

Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy.

Entropy is the average amount of information contained in each message received. Here, a message stands for an event, or a sample or a character drawn from a distribution or a data stream.
Entropy thus characterizes our uncertainty about our source of information. The source is also characterized by the probability distribution of the samples drawn from it. The idea here is that the less likely an event is, the more information it provides when
it occurs.

Generally, "entropy" stands for "disorder" or uncertainty. The entropy we talk about here was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication".
We also call it Shannon entropy or information entropy to distinguish from other occurrences of the term, which appears in various parts of physics in different forms.

Named after Boltzmann's H-theorem, Shannon defined the entropy Η (Greek letter Η, η) of a discrete random variable X with possible values {x1, x2,
..., xn}
 and probability mass function P(X) as:

H(X)=E(−ln(P(x)))

Here E is the expected value operator. When taken from a finite sample, the entropy can explicitly be written as

H(X)=−∑i=1nP(xi)log b(P(xi))

Where b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10. The unit of entropy is bit for b = 2, nat for b = e,
and dit (or digit) for b = 10 respectively.

In the case of P(xi) = 0 for some i, the value of the corresponding summand 0 logb(0) is taken to be a well-known limit:

0log b(0)=limp→0+plog b(p)

Your task is to calculate the entropy of a finite sample with N values.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer N (1 <= N <= 100) and a string S. The string S is one of "bit", "nat" or "dit", indicating the unit of entropy.

In the next line, there are N non-negative integers P1P2, .., PNPi means the probability
of the i-th value in percentage and the sum of Pi will be 100.

Output

For each test case, output the entropy in the corresponding unit.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

3
3 bit
25 25 50
7 nat
1 2 4 8 16 32 37
10 dit
10 10 10 10 10 10 10 10 10 10

Sample Output

1.500000000000
1.480810832465
1.000000000000

Author: ZHOU, Yuchen

PS:2014年ACM/ICPC
亚洲区域赛牡丹江(第一站)现场赛

代码例如以下:

#include<cstdio>
#include<cmath>
#include <cstring>
const double e = exp(1.0);
double judge(char s[])
{
if(strcmp("bit",s) == 0)
return 2.0;
else if(strcmp("nat",s) == 0)
return e;
else if(strcmp("dit",s) == 0)
return 10.0; }
int main()
{
int t;
int n;
char s[7];
double p[117];
//printf("%lf\n",e);
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
scanf("%s",s);
double b = judge(s);
for(int i = 0; i < n; i++)
{
scanf("%lf",&p[i]);
p[i] /= 100.0;
}
double ans = 0;
double tt = log(b);
for(int i = 0; i < n; i++)
{
if(p[i] != 0)
ans+=p[i]*log(p[i])/tt;
else if(p[i] == 0)
{
ans+=0;
}
}
ans = -ans;
printf("%.12lf\n",ans);
}
return 0;
}

ZOJ 3827 Information Entropy(数学题 牡丹江现场赛)的更多相关文章

  1. ZOJ 3827 Information Entropy (2014牡丹江区域赛)

    题目链接:ZOJ 3827 Information Entropy 依据题目的公式算吧,那个极限是0 AC代码: #include <stdio.h> #include <strin ...

  2. 2014 牡丹江现场赛 i题 (zoj 3827 Information Entropy)

    I - Information Entropy Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %l ...

  3. ZOJ 3827 Information Entropy 水题

    Information Entropy Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/sh ...

  4. ZOJ 3827 Information Entropy 水

    水 Information Entropy Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Informati ...

  5. zoj 3827 Information Entropy 【水题】

    Information Entropy Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Information ...

  6. ZOJ 3822 Domination(概率dp 牡丹江现场赛)

    题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...

  7. 【解题报告】牡丹江现场赛之ABDIK ZOJ 3819 3820 3822 3827 3829

    那天在机房做的同步赛,比现场赛要慢了一小时开始,直播那边已经可以看到榜了,所以上来就知道A和I是水题,当时机房电脑出了点问题,就慢了好几分钟,12分钟才A掉第一题... A.Average Score ...

  8. 2014ACMICPC亚洲区域赛牡丹江现场赛之旅

    下午就要坐卧铺赶回北京了.闲来无事.写个总结,给以后的自己看. 因为孔神要保研面试,所以仅仅有我们队里三个人上路. 我们是周五坐的十二点出发的卧铺,一路上不算无聊.恰巧邻床是北航的神犇.于是下午和北航 ...

  9. 2014ACM/ICPC亚洲区域赛牡丹江现场赛总结

    不知道怎样说起-- 感觉还没那个比赛的感觉呢?如今就结束了. 9号.10号的时候学校还评比国奖.励志奖啥的,由于要来比赛,所以那些事情队友的国奖不能答辩.自己的励志奖班里乱搞要投票,自己又不在,真是无 ...

随机推荐

  1. 从 C++ 到 Objective-C 的快速指南

    简介 当我开始为iOS写代码的时候,我意识到,作为一个C++开发者,我必须花费更多的时间来弄清楚Objective-C中怪异的东西.这就是一个帮助C++专家的快速指南,能够使他们快速的掌握Apple的 ...

  2. 学习笔记 第五章 使用CSS美化网页文本

    第五章   使用CSS美化网页文本 学习重点 定义字体类型.大小.颜色等字体样式: 设计文本样式,如对齐.行高.间距等: 能够灵活设计美观.实用的网页正文版式. 5.1 字体样式 5.1.1 定义字体 ...

  3. C++学习笔记(二)之数组

    数组作形参时,实际传入数组首地址 void print(const int*) void print(const int []) ]) 三种方法等价

  4. struts2之通配符映射

    系统有n多个请求时候,不可能以一个action对应一个映射.可以用通配符映射将成百上千请求简化成一个通用映射. 通配符映射规则:1.若找到多个匹配,没有通配符的将胜出. 2.若指定的动作不存在,str ...

  5. dbcp数据源配置

    <bean id="dbcpDataSource"  class="org.apache.commons.dbcp.BasicDataSource" de ...

  6. Linux文件排序和FASTA文件操作

    文件排序 seq: 产生一系列的数字; man seq查看其具体使用.我们这使用seq产生下游分析所用到的输入文件. # 产生从1到10的数,步长为1 $ seq 1 10 1 2 3 4 5 6 7 ...

  7. java虚拟机(七)--java内存模型JMM

    本文参考慕课网相关视频和博客https://mp.weixin.qq.com/s/tV0MfDdJqGwGMHCIkqnAgA,图也是这个博客的,这篇只是自己的简单总结,想要深 入理解可以访问这两块内 ...

  8. vue基础---表单输入绑定

    [一]基础用法 用 v-model 指令在表单 <input>.<textarea> 及 <select> 元素上创建双向数据绑定.它会根据控件类型自动选取正确的方 ...

  9. (转)vim编辑器操作命令大全-绝对全

    周六了,熟悉熟悉vim 命令 学习链接: vim命令大全 http://blog.csdn.net/scaleqiao/article/details/45153379 vim命令小技巧 http:/ ...

  10. boostrap标签

    字体: <lead>:加强显示 <strong><b>:字体加粗 <i><em>:斜体字 .text-muted:提示,使用浅灰色(#999 ...