POJ3680 Intervals —— 区间k覆盖问题(最小费用流)
题目链接:https://vjudge.net/problem/POJ-3680
| Time Limit: 5000MS | Memory Limit: 65536K | |
| Total Submissions: 8711 | Accepted: 3726 |
Description
You are given N weighted open intervals. The ith interval covers (ai, bi) and weighs wi. Your task is to pick some of the intervals to maximize the total weights under the limit that no point in the real axis is covered more than k times.
Input
The first line of input is the number of test case.
The first line of each test case contains two integers, N and K (1 ≤ K ≤ N ≤ 200).
The next N line each contain three integers ai, bi, wi(1 ≤ ai < bi ≤ 100,000, 1 ≤ wi ≤ 100,000) describing the intervals.
There is a blank line before each test case.
Output
For each test case output the maximum total weights in a separate line.
Sample Input
4 3 1
1 2 2
2 3 4
3 4 8 3 1
1 3 2
2 3 4
3 4 8 3 1
1 100000 100000
1 2 3
100 200 300 3 2
1 100000 100000
1 150 301
100 200 300
Sample Output
14
12
100000
100301
Source
题意:
数轴上有一些带权的区间, 选出权值和尽量大的一些区间, 使得任意一个数最多被k个区间覆盖。
题解:
可用最小费用流解决,构图方法如下:
1.把数轴上每个数作为一个点。
2.对于相邻的点,连一条边:i-->i+1, 容量为k, 费用为0。i-->i+1设为k,保证了x-->i(0<=x<i)的流量不高于k。因此,还需在数轴的最右边增加一个汇点, 数轴的最后一个点连向此汇点,容量为k, 费用为0。
3.对于区间[u, v], 连一条边:u-->v,容量为1, 费用为-w。
4.以数轴最左端的点作为源点,跑最小费用流, 把得到的最小花费取反,即为答案。
5.由于此题数轴的范围比较大,而实际用到的点却很少,所以可以先对数轴进行离散化。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXM = 1e5+;
const int MAXN = +; struct Edge
{
int to, next, cap, flow, cost;
}edge[MAXM];
int tot, head[MAXN];
int pre[MAXN], dis[MAXN];
bool vis[MAXN];
int N; void init(int n)
{
N = n;
tot = ;
memset(head, -, sizeof(head));
} void add(int u, int v, int cap, int cost)
{
edge[tot].to = v; edge[tot].cap = cap; edge[tot].cost = cost;
edge[tot].flow = ; edge[tot].next = head[u]; head[u] = tot++;
edge[tot].to = u; edge[tot].cap = ; edge[tot].cost = -cost;
edge[tot].flow = ; edge[tot].next = head[v]; head[v] = tot++;
} bool spfa(int s, int t)
{
queue<int>q;
for(int i = ; i<N; i++)
{
dis[i] = INF;
vis[i] = false;
pre[i] = -;
} dis[s] = ;
vis[s] = true;
q.push(s);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = false;
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(edge[i].cap>edge[i].flow && dis[v]>dis[u]+edge[i].cost)
{
dis[v] = dis[u]+edge[i].cost;
pre[v] = i;
if(!vis[v])
{
vis[v] = true;
q.push(v);
}
}
}
}
if(pre[t]==-) return false;
return true;
} int minCostMaxFlow(int s, int t, int &cost)
{
int flow = ;
cost = ;
while(spfa(s,t))
{
int Min = INF;
for(int i = pre[t]; i!=-; i = pre[edge[i^].to])
{
if(Min>edge[i].cap-edge[i].flow)
Min = edge[i].cap-edge[i].flow;
}
for(int i = pre[t]; i!=-; i = pre[edge[i^].to])
{
edge[i].flow += Min;
edge[i^].flow -= Min;
cost += edge[i].cost*Min;
}
flow += Min;
}
return flow;
} int interval[][];
int M[MAXN];
int main()
{
int T, n, k;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &k);
int cnt = ;
for(int i = ; i<=n; i++)
{
scanf("%d%d%d", &interval[i][],&interval[i][],&interval[i][]);
M[cnt++] = interval[i][];
M[cnt++] = interval[i][];
}
M[cnt++] = INF;
sort(M, M+cnt);
cnt = unique(M, M+cnt)-M; init(cnt);
for(int i = ; i<cnt-; i++)
{
add(i, i+, k, );
}
for(int i = ; i<=n; i++)
{
int left = lower_bound(M, M+cnt, interval[i][])-M;
int right = lower_bound(M, M+cnt, interval[i][])-M;
add(left, right, , -interval[i][]);
} int min_cost;
int start = , end = cnt-;
minCostMaxFlow(start, end, min_cost);
printf("%d\n", -min_cost);
}
}
POJ3680 Intervals —— 区间k覆盖问题(最小费用流)的更多相关文章
- poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙
/** 题目:poj3680 Intervals 区间k覆盖问题 最小费用最大流 建图巧妙 链接:http://poj.org/problem?id=3680 题意:给定n个区间,每个区间(ai,bi ...
- ACM-ICPC 2018 焦作赛区网络预赛 F. Modular Production Line (区间K覆盖-最小费用流)
很明显的区间K覆盖模型,用费用流求解.只是这题N可达1e5,需要将点离散化. 建模方式步骤: 1.对权值为w的区间[u,v],加边id(u)->id(v+1),容量为1,费用为-w; 2.对所有 ...
- hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙
/** 题目:hdu4106 区间k覆盖问题(连续m个数,最多选k个数) 最小费用最大流 建图巧妙 链接:http://acm.hdu.edu.cn/showproblem.php?pid=4106 ...
- CF802C Heidi and Library hard 费用流 区间k覆盖问题
LINK:Heidi and Library 先说一下简单版本的 就是权值都为1. 一直无脑加书 然后发现会引起冲突,可以发现此时需要扔掉一本书. 扔掉的话 可以考虑扔掉哪一本是最优的 可以发现扔掉n ...
- POJ 3762 The Bonus Salary!(最小K覆盖)
POJ 3762 The Bonus Salary! 题目链接 题意:给定一些任务.每一个任务有一个时间,有k天.一个时间仅仅能运行一个任务,每一个任务有一个价值.问怎么安排能得到最多价值 思路:典型 ...
- 【树状数组套主席树】带修改区间K大数
P2617 Dynamic Rankings 题目描述给定一个含有n个数的序列a[1],a[2],a[3]……a[n],程序必须回答这样的询问:对于给定的i,j,k,在a[i],a[i+1],a[i+ ...
- 区间K大数
区间K大数 问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列长度. 第二行包含n个正整数,表示给定的序列. 第三个包含一个正整数m, ...
- 区间K 大数查询
算法训练 区间k大数查询 时间限制:1.0s 内存限制:256.0MB 问题描述 给定一个序列,每次询问序列中第l个数到第r个数中第K大的数是哪个. 输入格式 第一行包含一个数n,表示序列 ...
- 【BZOJ】3065: 带插入区间K小值
http://www.lydsy.com/JudgeOnline/problem.php?id=3065 题意:带插入.修改的区间k小值在线查询.(原序列n<=35000, 询问<=175 ...
随机推荐
- C Looooops(poj 2115)
大致题意: 对于C的for(i=A ; i!=B ;i +=C)循环语句,问在k位存储系统中循环几次才会结束. 若在有限次内结束,则输出循环次数. 否则输出死循环. 解题思路: 题意不难理解,只是利用 ...
- UVa1363 Joseph's Problem
把整个序列进行拆分成[k,k/2),[k/2, k/3), [k/3,k/4)...k[k/a, k/b)的形式,对于k/i(整除)相同的项,k%i成等差数列. /*by SilverN*/ #inc ...
- SGU101 求有重边的无向图欧拉迹
题意:好多木棒,俩端有数字(0--6)标记,按数字相同的端首尾相连成一条直线(木棒可以相同).即求有重边的无向图欧拉迹. 先判定是否为欧拉图,俩个条件,不说了.如果是欧拉图,输出路经. 方法:dfs遍 ...
- AC日记——小书童——刷题大军 洛谷 P1926
题目背景 数学是火,点亮物理的灯:物理是灯,照亮化学的路:化学是路,通向生物的坑:生物是坑,埋葬学理的人. 文言是火,点亮历史宫灯:历史是灯,照亮社会之路:社会是路,通向哲学大坑:哲学是坑,埋葬文科生 ...
- IntelliJ IDEA设置properties文件显示中文
配置这里: 注意:上面是Default Settings,还需要在Settings中设置成上面一样的.
- Ubuntu官方Wiki教程资源
前言:通常学习一样新知识时,最快的方式是通过搜索引擎然后以最快的方式拿枪上战场,如果接下来还一直依赖搜索引擎去打,那么你会发现自己永远都在打游击:那么如果要解决这个问题,必须要学会系统的学习,只有连贯 ...
- 经典游戏“大富翁4”存档文件修改器Rich4Editor下载
下载地址: http://files.cnblogs.com/files/xiandedanteng/Rich4Editor20170614.zip http://files.cnblogs.com/ ...
- JavaSE Map的使用
1.Map概述 Map与Collection并列存在.用来保存具有映射关系的数据:Key-Value Map 中的 key 和 value都能够是不论什么引用类型的数据 Map 中的 key 用Se ...
- Qt在线技术交流之OpenGL、Quick以及所经历项目开发心得分享
时间:3月25日晚上7:30 主题:Qt在线技术交流之OpenGL.Quick以及所经历项目开发心得分享 直播:http://qtdream.com 主页.全民TV,可能会加上其他的直播平台进行转播 ...
- jobject和jclass
jclass和jobject的迷惑第一次使用JNI,实例引用(jobject)和类引用(jclass)让人觉得很困惑.实例引用与一个数组和java.lang.Object类或它的子类的实例对应.类引用 ...