这题并不复杂。

设$A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

由题中公式:

$\begin{pmatrix}
f(n+1) & f(n)\\ 
f(n+1) & f(n-1)
\end{pmatrix} = {\begin{pmatrix}
1 & 1 \\ 
1 & 0
\end{pmatrix}}^{n}$

可知,若要求f(n)只要求矩阵A的n次方即可。设我们所需的矩阵为$Answer$.

对于此题,我们可以先将$Answer$矩阵设置为$E$。

再求出${A}^{{2}^{0}}$、${A}^{{2}^{1}}$、${A}^{{2}^{2}}$ ... ${A}^{{2}^{m}}$ (${2}^{m}\leq n <{2}^{m+1}$)

其中,后一个矩阵为前一个矩阵的平方。

把他们储存起来。

对上述矩阵从后到前遍历。

当遍历到第i项时,若${2}^{i} \leq n$,则将$Answer$矩阵与此矩阵项相乘,积作为新的$Answer$矩阵。然后,将$n$减去${2}^{i}$,再接着遍历下一项,直至$n = 0$。

遍历结束后的$Answer$矩阵即为我们所需的矩阵。

 1 #include <cstddef>
2 #include <cstdio>
3 #include <cstring>
4
5 struct matrix {
6 unsigned m[2][2];
7 };
8
9 #define multiply(a,b,r) (((r)[0][0]=(a)[0][0]*(b)[0][0]+(a)[0][1]*(b)[1][0]),((r)[0][1]=(a)[0][0]*(b)[0][1]+(a)[0][1]*(b)[1][1]),((r)[1][0]=(a)[1][0]*(b)[0][0]+(a)[1][1]*(b)[1][0]),((r)[1][1]=(a)[1][0]*(b)[0][1]+(a)[1][1]*(b)[1][1]))
10
11 int fibo_mod_by_10000(unsigned int n) {
12 if (n == 0)
13 return 0;
14 unsigned int mask = 0u, m = 0u;
15
16 while ((mask & n) != n) {
17 mask <<= 1u;
18 mask += 1u;
19 ++m;
20 }
21
22 matrix * ms = new matrix[m + 1u];
23 ms[1u].m[0][0] = 1u;
24 ms[1u].m[0][1] = 1u;
25 ms[1u].m[1][0] = 1u;
26 ms[1u].m[1][1] = 0u;
27
28 for (unsigned int i = 1u; i < m; ++i) {
29 multiply(ms[i].m, ms[i].m, ms[i + 1].m);
30 ms[i + 1].m[0][0] %= 10000u;
31 ms[i + 1].m[0][1] %= 10000u;
32 ms[i + 1].m[1][0] %= 10000u;
33 ms[i + 1].m[1][1] %= 10000u;
34 }
35
36 matrix result, tmp;
37 memcpy(&result, &(ms[m]), sizeof(matrix));
38 n -= (1u << (m - 1u));
39
40 while (n != 1u && n != 0u) {
41 while ((1u << (m - 1u)) > n)
42 --m;
43 memcpy(&tmp, &result, sizeof(matrix));
44 multiply(tmp.m, ms[m].m, result.m);
45 result.m[0][0] %= 10000u;
46 result.m[0][1] %= 10000u;
47 result.m[1][0] %= 10000u;
48 result.m[1][1] %= 10000u;
49 n -= (1u << (m - 1u));
50 }
51 unsigned r;
52 delete[] ms;
53 if (n == 1u)
54 return result.m[0][0];
55 else
56 return result.m[0][1];
57 }
58
59 int main()
60 {
61 int i;
62 while ((scanf("%d", &i)), (i != -1))
63 printf("%d\n", fibo_mod_by_10000(i));
64 return 0;
65 }

POJ 3070 - 快速矩阵幂求斐波纳契数列的更多相关文章

  1. 【poj3070】矩阵乘法求斐波那契数列

    [题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...

  2. poj3070矩阵快速幂求斐波那契数列

      Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13172   Accepted: 9368 Desc ...

  3. 51 Nod 1242 矩阵快速幂求斐波那契数列

    #include<bits/stdc++.h> #define mod 1000000009 using namespace std; typedef long long ll; type ...

  4. python 快速幂求斐波那契数列

    先占坑 后面再写详细的 import numpy as np def pow(n): a = np.array([[1,0],[0,1]]) b = np.array([[1,1],[1,0]]) n ...

  5. codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质

    E. Anniversary time limit per test2 seconds memory limit per test256 megabytes inputstandard input o ...

  6. Java算法求最大最小值,冒泡排序,斐波纳契数列一些经典算法<不断更新中>

    清明在家,无聊,把一些经典的算法总结了一下. 一.求最大,最小值 Scanner input=new Scanner(System.in); int[] a={21,31,4,2,766,345,2, ...

  7. C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55

    //C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55 using System; using System.Collections.Generic; using S ...

  8. 黑马入学基础测试(三)求斐波那契数列第n项,n<30,斐波那契数列前10项为 1,1,2,3,5,8,13,21,34,55

    .获得用户的输入 计算      3打印就行了.   这里用到了java.util.Scanner   具体API  我就觉得不常用.解决问题就ok了.注意的是:他们按照流体的方式读取.而不是刻意反复 ...

  9. golang 闭包求斐波那契数列

    题目是Go指南中的闭包求斐波那契数列 package main import "fmt" // 返回一个"返回int的函数" func fibonacci() ...

随机推荐

  1. The Evaluation of Determinant(求行列式mod一个数的值)

    #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #i ...

  2. WinForm 中限制只能输入数字

    在Winform(C#)中要实现限制Textbox只能输入数字,一般的做法就是在按键事件中处理,判断keychar的值.限制只能输入数字,小数点,Backspace,del这几个键.数字0~9所对应的 ...

  3. WCF 配置文件中的MaxStringContentLength & MaxReceivedMessageSize

    中午测试员在测试系统模块时发现无法通过WCF从服务器下载数据,检查配置文件后,建议开发人员修改站点的WEB.CONFIG文件,具体修改对比如下: 旧的: <binding name=" ...

  4. Setting .xap MIME Type for Silverlight

    http://www.adefwebserver.com/dotnetnukehelp/misc/Silverlight/SettingMimeType.html Windows 2003: In I ...

  5. UVa 10315 - Poker Hands

    题目:两个人手里各有五张牌,比較两牌型大小. 比較规则例如以下:(按优先级排序,优先级同样按以下内部规则比較) 1.straight-flush:同花顺,牌面连续,花色同样,按最大的值比較. 2.fo ...

  6. Can JavaScript connect with MySQL? 浏览器控制台的js采集数据结果持久化存储

    浏览器控制台的js采集数据结果持久化存储 how to open a file in javascript https://developer.mozilla.org/en-US/docs/Web/A ...

  7. postgis经常使用函数介绍(一)

    概述: 在进行地理信息系统开发的过程中,经常使用的空间数据库有esri的sde,postgres的postgis以及mySQL的mysql gis等等,在本文.给大家介绍的是有关postgis的一些经 ...

  8. AD9850驱动程序--MSP430版本

    前段时间忙着画板子搞运放搞滤波了,程序更新的少,发现MSP430不是太好用,尤其Timer,不过也与我使用内部晶振有关,产生正玄波之前用MSP430发出PWM,再进行滤波变为正弦波太麻烦了,这次改用D ...

  9. Complicated Expressions(表达式转换)

    http://poj.org/problem?id=1400 题意:给出一个表达式可能含有多余的括号,去掉多余的括号,输出它的最简形式. 思路:先将表达式转化成后缀式,因为后缀式不含括号,然后再转化成 ...

  10. phpci发送邮件

    $config['protocol']='smtp'; $config['smtp_host']='smtp.163.com';//163服务器,之前用了qq服务器死活发不出去,不知道什么原因,可以自 ...