这题并不复杂。

设$A=\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$

由题中公式:

$\begin{pmatrix}
f(n+1) & f(n)\\ 
f(n+1) & f(n-1)
\end{pmatrix} = {\begin{pmatrix}
1 & 1 \\ 
1 & 0
\end{pmatrix}}^{n}$

可知,若要求f(n)只要求矩阵A的n次方即可。设我们所需的矩阵为$Answer$.

对于此题,我们可以先将$Answer$矩阵设置为$E$。

再求出${A}^{{2}^{0}}$、${A}^{{2}^{1}}$、${A}^{{2}^{2}}$ ... ${A}^{{2}^{m}}$ (${2}^{m}\leq n <{2}^{m+1}$)

其中,后一个矩阵为前一个矩阵的平方。

把他们储存起来。

对上述矩阵从后到前遍历。

当遍历到第i项时,若${2}^{i} \leq n$,则将$Answer$矩阵与此矩阵项相乘,积作为新的$Answer$矩阵。然后,将$n$减去${2}^{i}$,再接着遍历下一项,直至$n = 0$。

遍历结束后的$Answer$矩阵即为我们所需的矩阵。

 1 #include <cstddef>
2 #include <cstdio>
3 #include <cstring>
4
5 struct matrix {
6 unsigned m[2][2];
7 };
8
9 #define multiply(a,b,r) (((r)[0][0]=(a)[0][0]*(b)[0][0]+(a)[0][1]*(b)[1][0]),((r)[0][1]=(a)[0][0]*(b)[0][1]+(a)[0][1]*(b)[1][1]),((r)[1][0]=(a)[1][0]*(b)[0][0]+(a)[1][1]*(b)[1][0]),((r)[1][1]=(a)[1][0]*(b)[0][1]+(a)[1][1]*(b)[1][1]))
10
11 int fibo_mod_by_10000(unsigned int n) {
12 if (n == 0)
13 return 0;
14 unsigned int mask = 0u, m = 0u;
15
16 while ((mask & n) != n) {
17 mask <<= 1u;
18 mask += 1u;
19 ++m;
20 }
21
22 matrix * ms = new matrix[m + 1u];
23 ms[1u].m[0][0] = 1u;
24 ms[1u].m[0][1] = 1u;
25 ms[1u].m[1][0] = 1u;
26 ms[1u].m[1][1] = 0u;
27
28 for (unsigned int i = 1u; i < m; ++i) {
29 multiply(ms[i].m, ms[i].m, ms[i + 1].m);
30 ms[i + 1].m[0][0] %= 10000u;
31 ms[i + 1].m[0][1] %= 10000u;
32 ms[i + 1].m[1][0] %= 10000u;
33 ms[i + 1].m[1][1] %= 10000u;
34 }
35
36 matrix result, tmp;
37 memcpy(&result, &(ms[m]), sizeof(matrix));
38 n -= (1u << (m - 1u));
39
40 while (n != 1u && n != 0u) {
41 while ((1u << (m - 1u)) > n)
42 --m;
43 memcpy(&tmp, &result, sizeof(matrix));
44 multiply(tmp.m, ms[m].m, result.m);
45 result.m[0][0] %= 10000u;
46 result.m[0][1] %= 10000u;
47 result.m[1][0] %= 10000u;
48 result.m[1][1] %= 10000u;
49 n -= (1u << (m - 1u));
50 }
51 unsigned r;
52 delete[] ms;
53 if (n == 1u)
54 return result.m[0][0];
55 else
56 return result.m[0][1];
57 }
58
59 int main()
60 {
61 int i;
62 while ((scanf("%d", &i)), (i != -1))
63 printf("%d\n", fibo_mod_by_10000(i));
64 return 0;
65 }

POJ 3070 - 快速矩阵幂求斐波纳契数列的更多相关文章

  1. 【poj3070】矩阵乘法求斐波那契数列

    [题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...

  2. poj3070矩阵快速幂求斐波那契数列

      Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13172   Accepted: 9368 Desc ...

  3. 51 Nod 1242 矩阵快速幂求斐波那契数列

    #include<bits/stdc++.h> #define mod 1000000009 using namespace std; typedef long long ll; type ...

  4. python 快速幂求斐波那契数列

    先占坑 后面再写详细的 import numpy as np def pow(n): a = np.array([[1,0],[0,1]]) b = np.array([[1,1],[1,0]]) n ...

  5. codeforce 227E 矩阵快速幂求斐波那契+N个连续数求最大公约数+斐波那契数列的性质

    E. Anniversary time limit per test2 seconds memory limit per test256 megabytes inputstandard input o ...

  6. Java算法求最大最小值,冒泡排序,斐波纳契数列一些经典算法<不断更新中>

    清明在家,无聊,把一些经典的算法总结了一下. 一.求最大,最小值 Scanner input=new Scanner(System.in); int[] a={21,31,4,2,766,345,2, ...

  7. C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55

    //C# 求斐波那契数列的前10个数字 :1 1 2 3 5 8 13 21 34 55 using System; using System.Collections.Generic; using S ...

  8. 黑马入学基础测试(三)求斐波那契数列第n项,n<30,斐波那契数列前10项为 1,1,2,3,5,8,13,21,34,55

    .获得用户的输入 计算      3打印就行了.   这里用到了java.util.Scanner   具体API  我就觉得不常用.解决问题就ok了.注意的是:他们按照流体的方式读取.而不是刻意反复 ...

  9. golang 闭包求斐波那契数列

    题目是Go指南中的闭包求斐波那契数列 package main import "fmt" // 返回一个"返回int的函数" func fibonacci() ...

随机推荐

  1. UVa 11362 - Phone List

    题目:给你一组电话号码,推断是否有一些号码是其它的前缀(或相等). 分析:字符串.字典树.利用字典树储存查询就可以,注意两种情况处理: 1.先短后长(前缀在前):2.先长后短(前缀在后). 说明:第5 ...

  2. FFmpeg滤镜使用指南

    文件夹 1. FFmpeg滤镜文档 2. 演示样例   2.1 缩放   2.2 视频加速   2.3 滤镜图,链和滤镜关系   2.4 多个输入覆盖同一个2x2 网格   2.5 转义字符   2. ...

  3. HTTP的GET和POST请求

    1.GET请求: 格式例如以下: request-line headers blank-line request-body 如图是我用wireshark截的一个GET请求的HTTP首部: GET请求发 ...

  4. U4699 鸡蛋

    U4699 鸡蛋 0通过 37提交 题目提供者飞翔 标签 难度尚无评定 提交 最新讨论 暂时没有讨论 题目背景 调皮的kkk准备恶搞他的同学兼朋友——你! 题目描述 kkk准备从楼上扔鸡蛋下来砸在lz ...

  5. poj3254Corn Fields

    Corn Fields Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13765   Accepted: 7232 Desc ...

  6. 神经网络结构设计指导原则——输入层:神经元个数=feature维度 输出层:神经元个数=分类类别数,默认只用一个隐层 如果用多个隐层,则每个隐层的神经元数目都一样

    神经网络结构设计指导原则 原文   http://blog.csdn.net/ybdesire/article/details/52821185   下面这个神经网络结构设计指导原则是Andrew N ...

  7. luogu 3415 祭坛

    题目大意: 在平面上,有 n 个水晶柱,每个水晶柱可以用一个点表示 如果 4 个水晶柱依次相连可以构成一个四边形,满足其两条对角线分别平行于 x 轴和 y 轴,并且对角线的交点位于四边形内部(不包括边 ...

  8. codeforces round #427 div2

    A:读懂题,乘一下判断大小就行了 #include<bits/stdc++.h> using namespace std; int main() { int s, v1, v2, t1, ...

  9. 使用centos 5.x 64位系统安装astgo 2014 v7.3教程(含全套安装文件)

    版本特色: 全自动安装 安装过程中不用频繁输入yes或回车 自带完整号码归属地数据库 自带触屏版WAP ·首先确定你需要使用astgo 2014 7.0还是7.3: astgo 2014 v 7.0 ...

  10. smarty用法

    smarty学习指南 在smarty的模板设计部分我简单的把smarty在模板中的一些常用设置做了简单的介绍,这一节主要来介绍一下如何在smarty中开始我们程序设计.下载Smarty文件放到你们站点 ...