BZOJ 2502 Luogu P4843 清理雪道 最小流
题意:
滑雪场坐落在FJ省西北部的若干座山上。
从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向。
你的团队负责每周定时清理雪道。你们拥有一架直升飞机,每次飞行可以从总部带一个人降落到滑雪场的某个地点,然后再飞回总部。从降落的地点出发,这个人可以顺着斜坡向下滑行,并清理他所经过的雪道。
由于每次飞行的耗费是固定的,为了最小化耗费,你想知道如何用最少的飞行次数才能完成清理雪道的任务。
分析:
这就是一个最小路径覆盖问题咯。
但是什么二分图之类的科技,可能时间上并不能过去。
所以我们考虑直接跑网络流,原图中至少走一遍的边,流量下界为1即可,所有的点要从S连inf边,向T连inf边。
就是一个最小流的问题:
代码:
#include<bits/stdc++.h>
#define ms(a,x) memset(a,x,sizeof(a))
#define cpy() for(int i=0;i<=T;i++) cur[i]=h[i]
using namespace std;int S,T,tot=;
const int N=,inf=0x3f3f3f3f;
struct node{int y,z,nxt;}e[N*N*];
int c=,h[N],d[N],m,k,n,ans,SS,TT;
int a[N],q[N*],t[N],sm,cur[N];
void add(int x,int y,int z){
e[++c]=(node){y,z,h[x]};h[x]=c;
e[++c]=(node){x,,h[y]};h[y]=c;
} bool bfs(){int f=,t=;ms(d,-);
d[S]=;q[++t]=S;
while(f<=t){
int x=q[f++];
for(int i=h[x],y;i;i=e[i].nxt)
if(d[y=e[i].y]==-&&e[i].z)
d[y]=d[x]+,q[++t]=y;
} return (d[T]!=-);
} int dfs(int x,int f){
if(x==T) return f;int w,tmp=;
for(int i=cur[x],y;i;i=e[i].nxt)
if(d[y=e[i].y]==d[x]+&&e[i].z){
w=dfs(y,min(e[i].z,f-tmp));
if(!w) d[y]=-;e[i].z-=w;
e[i^].z+=w;tmp+=w;if(e[i].z>)
cur[x]=i;if(tmp==f) return f;
} return tmp;
} void solve(){
while(bfs()){cpy();tot+=dfs(S,inf);}
} int main(){
scanf("%d",&n);
for(int i=,x;i<=n;i++){
scanf("%d",&k);
while(k--) scanf("%d",&x),
add(i,x,inf),t[i]--,t[x]++;
} SS=n+,TT=n+;S=;T=n+;
for(int i=;i<=n;i++)
add(SS,i,inf),add(i,TT,inf);
for(int i=;i<=n;i++)
if(t[i]>) add(S,i,t[i]);
else if(t[i]<) add(i,T,-t[i]);
solve();add(TT,SS,inf);solve();
printf("%d\n",e[c].z);return ;
}
最小流
BZOJ 2502 Luogu P4843 清理雪道 最小流的更多相关文章
- BZOJ 2502 清理雪道/ Luogu P4843 清理雪道 (有源汇上下界最小流)
题意 有一个有向无环图,求最少的路径条数覆盖所有的边 分析 有源汇上下界最小流板题,直接放代码了,不会的看dalao博客:liu_runda 有点长,讲的很好,静心看一定能看懂 CODE #inclu ...
- BZOJ 2502: 清理雪道 [最小流]
2502: 清理雪道 题意:任意点出发任意次每条边至少经过一次最小花费. 下界1,裸最小流.... #include <iostream> #include <cstdio> ...
- luogu P4843 清理雪道
嘟嘟嘟 这其实就是一个最小流的板子题.把每一条边的流量至少为1,然后建立附加源汇跑一遍最大流,连上\(t, s\),再跑一遍最大流就是答案. 刚开始我想错了:统计每一个点的出度和入度,去两者较大值\( ...
- P4843 清理雪道
题目地址:P4843 清理雪道 上下界网络流 无源汇上下界可行流 给定 \(n\) 个点, \(m\) 条边的网络,求一个可行解,使得边 \((u,v)\) 的流量介于 \([B(u,v),C(u,v ...
- P4843 清理雪道(上下界网络流)
P4843 清理雪道 上下界最小流 我们先搞一遍上下界可行流(转) 回忆上下界最大流的写法:在可行流的残量网络$s\ -\ t$上跑最大流,答案为可行流$+$残量网络的最大流 那么上下界最小流的写法呢 ...
- 洛谷P4843 清理雪道
题意:给你DAG,求最小路径边覆盖.路径可重. 解:首先可以想到边转点,发现有n²条边,果断超时. 有源汇有上下界最小流. 建图:每条边都建立一条边,流量限制为[1, 1]. 源点向每个点连边,因为都 ...
- BZOJ 4464 旅行时的困惑 最小流
题面: Waldives 有 N 个小岛.目前的交通系统中包含 N-1 条快艇专线,每条快艇 专线连接两个岛.这 N-1条快艇专线恰好形成了一棵树. 由于特殊的原因,所有N-1条快艇专线都是单向的.这 ...
- BZOJ 3894 Luogu P4313 文理分科 (最小割)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3894 (luogu) https://www.luogu.org/pro ...
- bzoj 2502 清理雪道 (有源汇上下界最小流)
2502: 清理雪道 Time Limit: 10 Sec Memory Limit: 128 MB Description 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场 ...
随机推荐
- eclipse集成lombok注解不起作用
安装步骤: 步骤一:lombok的下载地址为:https://projectlombok.org/download,jar包很小.这里也把依赖写出来: <dependency> <g ...
- MySQL之不得不说的keepsync和trysync
此文已由作者温正湖授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 开宗明义,keepsync和trysync是网易MySQL分支版本InnoSQL的两个参数,非常重要的两个参 ...
- bzoj 1103: [POI2007]大都市meg【dfs序+树状数组】
很明显的暗示,就是在树的dfs序上维护树状数组,加减的时候差分即可 #include<iostream> #include<cstdio> #include<cstrin ...
- 洛谷P2221 [HAOI2012]高速公路(线段树+概率期望)
传送门 首先,答案等于$$ans=\sum_{i=l}^r\sum_{j=i}^r\frac{sum(i,j)}{C_{r-l+1}^2}$$ 也就是说所有情况的和除以总的情况数 因为这是一条链,我们 ...
- vsftpd 配置文件
# mple config file /etc/vsftpd/vsftpd.conf # # The default compiled in settings are fairly paranoid. ...
- ROS学习笔记十二:使用gazebo在ROS中仿真
想要在ROS系统中对我们的机器人进行仿真,需要使用gazebo. gazebo是一种适用于复杂室内多机器人和室外环境的仿真环境.它能够在三维环境中对多个机器人.传感器及物体进行仿真,产生实际传感器反馈 ...
- jacaScript数组
1.var arr=['1','2','3'] typeof arr (判断数组类型) print(arr)打印数组内容 2.arr[100]='x', 数组中间自动添加,alert(arr. ...
- SPFarm.local返回值为null
创建了一个控制台应用程序,想输出SP2010服务器场下所有对象模型信息,结果:SPFarm.local返回值为null. 经查询解决方法: 1 .net framework版本要使用3.5: 2 目标 ...
- .NET面试题解析(00)-系列文章索引
.NET面试题解析(01)-值类型与引用类型 .NET面试题解析(02)-拆箱与装箱 .NET面试题解析(03)-string与字符操作 .NET面试题解析(04)-类型.方法与继承 .NET面试题解 ...
- ajax通过新闻id获取列表
<div class="index_main"> <div class="page_l"> <i ...