题目链接:

F. Couple Cover

time limit per test

3 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

Couple Cover, a wildly popular luck-based game, is about to begin! Two players must work together to construct a rectangle. A bag withn balls, each with an integer written on it, is placed on the table. The first player reaches in and grabs a ball randomly (all balls have equal probability of being chosen) — the number written on this ball is the rectangle's width in meters. This ball is not returned to the bag, and the second player reaches into the bag and grabs another ball — the number written on this ball is the rectangle's height in meters. If the area of the rectangle is greater than or equal some threshold p square meters, the players win. Otherwise, they lose.

The organizers of the game are trying to select an appropriate value for p so that the probability of a couple winning is not too high and not too low, but they are slow at counting, so they have hired you to answer some questions for them. You are given a list of the numbers written on the balls, the organizers would like to know how many winning pairs of balls exist for different values of p. Note that two pairs are different if either the first or the second ball is different between the two in pair, and two different balls with the same number are considered different.

Input

The input begins with a single positive integer n in its own line (1 ≤ n ≤ 10^6).

The second line contains n positive integers — the i-th number in this line is equal to ai (1 ≤ ai ≤ 3·106), the number written on the i-th ball.

The next line contains an integer m (1 ≤ m ≤ 106), the number of questions you are being asked.

Then, the following line contains m positive integers — the j-th number in this line is equal to the value of p (1 ≤ p ≤ 3·10^6) in the j-th question you are being asked.

Output

For each question, print the number of winning pairs of balls that exist for the given value of p in the separate line.

Examples
input
5
4 2 6 1 3
4
1 3 5 8
output
20
18
14
10
input
2
5 6
2
30 31
output
2
0 题意: 给一个数列,问这里面有多少对的积大于等于p; 思路:
由于询问太多,所以要降低复杂度,可以反方向考虑,可以用总的方案数减去小于p的方案数,小于p的方案数;
可以先把相同的数压缩,最的的复杂度是O(nlogn+m)

AC代码:
#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=3e6+10;
const int maxn=3e6;
const double eps=1e-10; int m,a[N],b[N];
LL num[N],sum[N],n;
void Init()
{
sort(a+1,a+n+1);
int cnt=0;
For(i,1,n)
{
if(a[i]==a[i-1])num[cnt]++;
else
{
++cnt;
b[cnt]=a[i];
num[cnt]=1;
}
}
For(i,1,cnt)
{
For(j,1,i)
{
if((LL)b[i]*b[j]>=maxn)break;
if(i==j)sum[b[i]*b[j]]+=num[i]*(num[i]-1);
else sum[b[i]*b[j]]+=2*num[i]*num[j];
}
}
//for(int i=1;i<30;i++)print(sum[i]);
For(i,1,maxn)sum[i]+=sum[i-1];
}
int main()
{
read(n);
For(i,1,n)read(a[i]);
Init();
read(m);
int p;
For(i,1,m)
{
read(p);
print((LL)n*(n-1)-sum[p-1]);
}
return 0;
}

  

codeforces 691F F. Couple Cover(组合计数)的更多相关文章

  1. Codeforces 932E Team work 【组合计数+斯特林数】

    Codeforces 932E Team work You have a team of N people. For a particular task, you can pick any non-e ...

  2. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  3. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  4. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  5. 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)

    [HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...

  6. [总结]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...

  7. 【Luogu4931】情侣?给我烧了! 加强版(组合计数)

    [Luogu4931]情侣?给我烧了! 加强版(组合计数) 题面 洛谷 题解 戳这里 忽然发现我自己推的方法是做这题的,也许后面写的那个才是做原题的QwQ. #include<iostream& ...

  8. 【Luogu4921】情侣?给我烧了!(组合计数)

    [Luogu4921]情侣?给我烧了!(组合计数) 题面 洛谷 题解 很有意思的一道题目. 直接容斥?怎么样都要一个平方复杂度了. 既然是恰好\(k\)对,那么我们直接来做: 首先枚举\(k\)对人出 ...

  9. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

随机推荐

  1. 通过css将元素固定在左下角

    position:fixed; bottom:0; left:0;

  2. 快速掌握RabbitMQ(二)——四种Exchange介绍及代码演示

    在上一篇的最后,编写了一个C#驱动RabbitMQ的简单栗子,了解了C#驱动RabbitMQ的基本用法.本章介绍RabbitMQ的四种Exchange及各种Exchange的使用场景. 1 direc ...

  3. jfinal使用idea启动 访问报404 action not found

    公司一个项目,在eclipse里面启动正常,换到idea里面启动后,启动没有报错,但是访问的时候会提示404 action not found. 百度了很多种解决方法 都没有解决. 今天脑子一转,想到 ...

  4. 标准IO函数以及基本知识点总结

    什么是标准IO呢?有哪些特点? 标准IO是标准c库提供的对文件操作的函数接口.他的特点是:1 带缓存,2 大部分都调用系统接口函数实现.(c库就是一种实现好的函数接口,作用是屏蔽下层细节.提供上层接口 ...

  5. 关于Java中强制类型转换的问题

    为了更好的理解我们先看下面的例子: package com.yonyou.test; import java.util.ArrayList; import java.util.Iterator; im ...

  6. 【转载】.NET Remoting学习笔记(二)激活方式

    目录 .NET Remoting学习笔记(一)概念 .NET Remoting学习笔记(二)激活方式 .NET Remoting学习笔记(三)信道 参考:百度百科 ♂风车车.Net 激活方式概念 在访 ...

  7. js 监控浏览器关闭(完美兼容chrome & ie & fire fox)

    var UnloadConfirm = {}; UnloadConfirm.MSG_UNLOAD = "数据尚未保存,离开后可能会导致数据丢失\n\n您确定要离开吗?"; Unlo ...

  8. Distributed Management Task Force----分布式管理任务组

    http://baike.baidu.com/link?url=Y9HGLs8Qj6pXbbgY6xPdfiGDsQO8Eu1e80B4giQtQ_hAfGNF59byxnLoERYri4Duw7Gw ...

  9. HDU 1284 钱币兑换问题 (完全背包)

    钱币兑换问题 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  10. HDU 3420 Bus Fair [补]

    今天玩魔灵玩多了,耽误了时间,回去宿舍又没电. /*********************************************/ Bus Fair Time Limit: 2000/10 ...