题目链接:

F. Couple Cover

time limit per test

3 seconds

memory limit per test

512 megabytes

input

standard input

output

standard output

Couple Cover, a wildly popular luck-based game, is about to begin! Two players must work together to construct a rectangle. A bag withn balls, each with an integer written on it, is placed on the table. The first player reaches in and grabs a ball randomly (all balls have equal probability of being chosen) — the number written on this ball is the rectangle's width in meters. This ball is not returned to the bag, and the second player reaches into the bag and grabs another ball — the number written on this ball is the rectangle's height in meters. If the area of the rectangle is greater than or equal some threshold p square meters, the players win. Otherwise, they lose.

The organizers of the game are trying to select an appropriate value for p so that the probability of a couple winning is not too high and not too low, but they are slow at counting, so they have hired you to answer some questions for them. You are given a list of the numbers written on the balls, the organizers would like to know how many winning pairs of balls exist for different values of p. Note that two pairs are different if either the first or the second ball is different between the two in pair, and two different balls with the same number are considered different.

Input

The input begins with a single positive integer n in its own line (1 ≤ n ≤ 10^6).

The second line contains n positive integers — the i-th number in this line is equal to ai (1 ≤ ai ≤ 3·106), the number written on the i-th ball.

The next line contains an integer m (1 ≤ m ≤ 106), the number of questions you are being asked.

Then, the following line contains m positive integers — the j-th number in this line is equal to the value of p (1 ≤ p ≤ 3·10^6) in the j-th question you are being asked.

Output

For each question, print the number of winning pairs of balls that exist for the given value of p in the separate line.

Examples
input
5
4 2 6 1 3
4
1 3 5 8
output
20
18
14
10
input
2
5 6
2
30 31
output
2
0 题意: 给一个数列,问这里面有多少对的积大于等于p; 思路:
由于询问太多,所以要降低复杂度,可以反方向考虑,可以用总的方案数减去小于p的方案数,小于p的方案数;
可以先把相同的数压缩,最的的复杂度是O(nlogn+m)

AC代码:
#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; #define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss)); typedef long long LL; template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('\n');
} const LL mod=1e9+7;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=3e6+10;
const int maxn=3e6;
const double eps=1e-10; int m,a[N],b[N];
LL num[N],sum[N],n;
void Init()
{
sort(a+1,a+n+1);
int cnt=0;
For(i,1,n)
{
if(a[i]==a[i-1])num[cnt]++;
else
{
++cnt;
b[cnt]=a[i];
num[cnt]=1;
}
}
For(i,1,cnt)
{
For(j,1,i)
{
if((LL)b[i]*b[j]>=maxn)break;
if(i==j)sum[b[i]*b[j]]+=num[i]*(num[i]-1);
else sum[b[i]*b[j]]+=2*num[i]*num[j];
}
}
//for(int i=1;i<30;i++)print(sum[i]);
For(i,1,maxn)sum[i]+=sum[i-1];
}
int main()
{
read(n);
For(i,1,n)read(a[i]);
Init();
read(m);
int p;
For(i,1,m)
{
read(p);
print((LL)n*(n-1)-sum[p-1]);
}
return 0;
}

  

codeforces 691F F. Couple Cover(组合计数)的更多相关文章

  1. Codeforces 932E Team work 【组合计数+斯特林数】

    Codeforces 932E Team work You have a team of N people. For a particular task, you can pick any non-e ...

  2. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  3. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  4. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  5. 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)

    [HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...

  6. [总结]数论和组合计数类数学相关(定理&证明&板子)

    0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...

  7. 【Luogu4931】情侣?给我烧了! 加强版(组合计数)

    [Luogu4931]情侣?给我烧了! 加强版(组合计数) 题面 洛谷 题解 戳这里 忽然发现我自己推的方法是做这题的,也许后面写的那个才是做原题的QwQ. #include<iostream& ...

  8. 【Luogu4921】情侣?给我烧了!(组合计数)

    [Luogu4921]情侣?给我烧了!(组合计数) 题面 洛谷 题解 很有意思的一道题目. 直接容斥?怎么样都要一个平方复杂度了. 既然是恰好\(k\)对,那么我们直接来做: 首先枚举\(k\)对人出 ...

  9. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

随机推荐

  1. 虚拟机centos 里tomcat的端口映射到主机 Windows里面

  2. python3.x对python2.x变动

    原文地址:http://rookiedong.iteye.com/blog/1185403 python 2.4 与 python 3.0 的比较 一. print 从语句变为函数 原:     pr ...

  3. luogu P1342 请柬

    题目描述 在电视时代,没有多少人观看戏剧表演.Malidinesia古董喜剧演员意识到这一事实,他们想宣传剧院,尤其是古色古香的喜剧片.他们已经打印请帖和所有必要的信息和计划.许多学生被雇来分发这些请 ...

  4. InnoDB: The Auto-extending innodb_system data file './ibdata1' is of a different size 640 pages (rounded down to MB) than specified in the .cnf file: initial 768 pages, max 0 (relevant if non-zero) pa

    2016-09-14T09:17:37.713955Z 0 [Note] InnoDB: If the mysqld execution user is authorized, page cleane ...

  5. 框架-数据库定义MD5加密

    1.--定义Md5加密declare @pt_pwd varchar(50)set @pt_pwd = ''set @pt_pwd = substring(sys.fn_sqlvarbasetostr ...

  6. Setup and Teardown Thread Group in Jmeter

    setup和teardown有点类似于每个测试用例开始和结束时要做的动作 A Thread Group is the starting point of any Jmeter Test Plan. A ...

  7. 全卷积网络FCN详解

    http://www.cnblogs.com/gujianhan/p/6030639.html CNN能够对图片进行分类,可是怎么样才能识别图片中特定部分的物体? (图像语义分割) FCN(Fully ...

  8. ubuntu harddisk uuid already exists

    就是virtualbox下先用u盘启动的虚拟机,把U盘的vhdk文件拷贝到本机,然后再启动,就有问题,提示什么uuid already exist 找了半天,网上基本都是说windows下如何用的.. ...

  9. linux 源码编译安装apache

    cc1 是c语言的编译器.

  10. FineReport实现java报表报表展示的效果图

    Java报表-动态折叠树 Java报表-段落明细表 Java报表-多层统计 Java报表-多源分片与冻结 Java报表-发票套打表 Java报表-非统一页面打印 Java报表-复杂票据 Java报表- ...