A friend of yours has taken the job of security officer at the Star-Buy Company, a famous depart- ment store. One of his tasks is to install a video surveillance system to guarantee the security of the customers (and the security of the merchandise of course) on all of the store's countless floors. As the company has only a limited budget, there will be only one camera on every floor. But these cameras may turn around to look in every direction.

The first problem is to choose where to install the camera for every floor. The only requirement is that every part of the room must be visible from there. In the following figure the left floor can be completely surveyed from the position indicated by a dot, while for the right floor, there is no such position, the given position failing to see the lower left part of the floor. 

Before trying to install the cameras, your friend first wants to know whether there is indeed a suitable position for them. He therefore asks you to write a program that, given a ground plan, de- termines whether there is a position from which the whole floor is visible. All floor ground plans form rectangular polygons, whose edges do not intersect each other and touch each other only at the corners. 

Input

The input contains several floor descriptions. Every description starts with the number n of vertices that bound the floor (4 <= n <= 100). The next n lines contain two integers each, the x and y coordinates for the n vertices, given in clockwise order. All vertices will be distinct and at corners of the polygon. Thus the edges alternate between horizontal and vertical.

A zero value for n indicates the end of the input.

Output

For every test case first output a line with the number of the floor, as shown in the sample output. Then print a line stating "Surveillance is possible." if there exists a position from which the entire floor can be observed, or print "Surveillance is impossible." if there is no such position.

Print a blank line after each test case.

Sample Input

4
0 0
0 1
1 1
1 0
8
0 0
0 2
1 2
1 1
2 1
2 2
3 2
3 0
0

Sample Output

Floor #1
Surveillance is possible. Floor #2
Surveillance is impossible.

题意:给定比较规则的多边形,问是否存在一点P,使得P到所有多边形上的点的路径都是在多边形内部,即是否存在核。

思路:反正是模板题,思路自己百度吧。

update:https://www.cnblogs.com/hua-dong/p/10670137.html

POJ1474:Video Surveillance(求多边形的核)(占位)的更多相关文章

  1. poj 1474 Video Surveillance - 求多边形有没有核

    /* poj 1474 Video Surveillance - 求多边形有没有核 */ #include <stdio.h> #include<math.h> const d ...

  2. POJ 1279 Art Gallery【半平面交】(求多边形的核)(模板题)

    <题目链接> 题目大意: 按顺时针顺序给出一个N边形,求N边形的核的面积. (多边形的核:它是平面简单多边形的核是该多边形内部的一个点集该点集中任意一点与多边形边界上一点的连线都处于这个多 ...

  3. poj1474 Video Surveillance

    题意:求多边形的内核,即:在多边形内部找到某个点,使得从这个点能不受阻碍地看到多边形的所有位置. 只要能看到所有的边,就能看到所有的位置.那么如果我们能够在多边形的内部的点x看到某条边AB,这个点x一 ...

  4. POJ1474 Video Surveillance(半平面交)

    求多边形核的存在性,过了这题但是过不了另一题的,不知道是模板的问题还是什么,但是这个模板还是可以过绝大部分的题的... #pragma warning(disable:4996) #include & ...

  5. POJ 3130 How I Mathematician Wonder What You Are!(半平面交求多边形的核)

    题目链接 题意 : 给你一个多边形,问你该多边形中是否存在一个点使得该点与该多边形任意一点的连线都在多边形之内. 思路 : 与3335一样,不过要注意方向变化一下. #include <stdi ...

  6. How I Mathematician Wonder What You Are! - POJ 3130(求多边形的核)

    题目大意:判断多多边形是否存在内核. 代码如下: #include<iostream> #include<string.h> #include<stdio.h> # ...

  7. poj 1474 Video Surveillance 【半平面交】

    半平面交求多边形的核,注意边是顺时针给出的 //卡精致死于是换(?)了一种求半平面交的方法-- #include<iostream> #include<cstdio> #inc ...

  8. POJ 1279 Art Gallery 半平面交 多边形的核

    题意:求多边形的核的面积 套模板即可 #include <iostream> #include <cstdio> #include <cmath> #define ...

  9. POJ - 1474 :Video Surveillance (半平面交-求核)

    pro:顺时针给定多边形,问是否可以放一个监控,可以监控到所有地方,即问是否存在多边形的核. 此题如果两点在同一边界上(且没有被隔段),也可以相互看到. sol:求多边形是否有核.先给直线按角度排序, ...

随机推荐

  1. Angular Material & Hello World

    前言 Angular Material(下称Material)的组件样式至少是可以满足一般的个人开发需求(我真是毫无设计天赋),也是Angular官方推荐的组件.我们通过用这个UI库来快速实现自己的i ...

  2. java中的数据转换与前置,后置加加

    public class Demo{ public static void main(String [] args){ int num=2; System.out.println(num++);//后 ...

  3. NIO与传统IO的区别(形象比喻)[转]

    传统的socket IO中,需要为每个连接创建一个线程,当并发的连接数量非常巨大时,线程所占用的栈内存和CPU线程切换的开销将非常巨大.使用NIO,不再需要为每个线程创建单独的线程,可以用一个含有限数 ...

  4. C#代码调用页面javascript函数

    C#代码调用javascript函数   前台<%@ Page Language="C#" AutoEventWireup="true" CodeFile ...

  5. 【C#】高级语言特有的单例模式

    public class Singleton { private Singleton () { } // 变量标记为 readonly.第一次引用类的成员或创建实例时,仅仅实例化一次instance对 ...

  6. apache多网站配置

    前言  虽说apache安装好后给了我们一个默认的一个网站.并且我们还能够将这个默认的网站改动成我们自己的网站.可是这似乎还不能全然满足我们的须要,由于当我们要在本机上开发(phpWeb)或者測试另外 ...

  7. Python中ConfigParser模块应用

    Python中ConfigParser模块应用 Python的ConfigParser模块定义了3个对INI文件进行操作的类 RawConfigParser.ConfigParser和SafeConf ...

  8. Cocoa root class

    问题来源: 常见面试问题之: NSObject和NSObject protocol有什么区别,为什么要有NSObject protocol, 有没有不继承自NSObject的类? 虽然在iOS开发过程 ...

  9. BAT&注册表重定向劫持

    RunJS 常用引导,有时启动某个应用需要环境变量可以这样启动应用,会对启动的进程生效,即被继承 set PATH=D:\Developer\sdk\platform-tools;%PATH% D: ...

  10. OpenStack源码系列---nova-compute

    nova-compute运行的节点为计算节点,虚拟机运行于计算节点上.例如对于创建虚拟机请求,nova-api接收到客户端请求后,经过nova-scheduler调度器调度,再将请求发送给某个选定的n ...