BZOJ2561 最小生成树 【最小割】
题目
给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上?
输入格式
第一行包含用空格隔开的两个整数,分别为N和M;
接下来M行,每行包含三个正整数u,v和w表示图G存在一条边权为w的边(u,v)。
最后一行包含用空格隔开的三个整数,分别为u,v,和 L;
数据保证图中没有自环。
输出格式
输出一行一个整数表示最少需要删掉的边的数量。
输入样例
3 2
3 2 1
1 2 3
1 2 2
输出样例
1
提示
对于20%的数据满足N ≤ 10,M ≤ 20,L ≤ 20;
对于50%的数据满足N ≤ 300,M ≤ 3000,L ≤ 200;
对于100%的数据满足N ≤ 20000,M ≤ 200000,L ≤ 20000。
题解
跪了QAQ怎么想得到是网络流,如此之大的范围
我们首先思考一下想要该边加入最小生成树,那么要使得加入这条边时u,v不连通
想想最小生成树的kruskal算法,在长度L之前如果存在一条路径使得u,v联通,那么轮到L时必定无法加入最小生成树
所以我们单独抽出所有权值<L的边,删减若干边使得u,v不连通
这就用到了最小割
最大生成树类似
可以证明,时间复杂度是\(O(M^{1.5})\)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 20005,maxm = 1000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m;
struct EDGE{int to,nxt,f;};
struct node{int a,b,w;}e[maxm];
struct FLOW{
EDGE ed[maxm];
int h[maxn],ne,S,T,vis[maxn],d[maxn],cur[maxn];
void init(){memset(h,0,sizeof(h)); ne = 2;}
void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],0}; h[v] = ne++;
}
bool bfs(){
for (int i = 1; i <= n; i++) d[i] = INF,vis[i] = false;
queue<int> q;
q.push(S); d[S] = 0; vis[S] = true;
int u;
while (!q.empty()){
u = q.front(); q.pop();
Redge(u) if (ed[k].f && !vis[to = ed[k].to]){
d[to] = d[u] + 1; vis[to] = true;
q.push(to);
}
}
return vis[T];
}
int dfs(int u,int minf){
if (u == T || !minf) return minf;
int f,flow = 0,to;
if (cur[u] == -1) cur[u] = h[u];
for (int& k = cur[u]; k; k = ed[k].nxt)
if (d[to = ed[k].to] == d[u] + 1 && (f = dfs(to,min(minf,ed[k].f)))){
ed[k].f -= f; ed[k ^ 1].f += f;
flow += f; minf -= f;
if (!minf) break;
}
return flow;
}
int maxflow(){
int flow = 0;
while (bfs()){
memset(cur,-1,sizeof(cur));
flow += dfs(S,INF);
}
return flow;
}
}G;
int main(){
n = read(); m = read();
for (int i = 1; i <= m; i++)
e[i].a = read(),e[i].b = read(),e[i].w = read();
G.init();
G.S = read(); G.T = read();
int ans = 0,L = read();
for (int i = 1; i <= m; i++)
if (e[i].w < L){
G.build(e[i].a,e[i].b,1);
G.build(e[i].b,e[i].a,1);
}
ans += G.maxflow();
G.init();
for (int i = 1; i <= m; i++)
if (e[i].w > L){
G.build(e[i].a,e[i].b,1);
G.build(e[i].b,e[i].a,1);
}
ans += G.maxflow();
printf("%d\n",ans);
return 0;
}
BZOJ2561 最小生成树 【最小割】的更多相关文章
- BZOJ2561最小生成树——最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
- 【BZOJ2561】最小生成树 最小割
[BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在 ...
- 【BZOJ-2521】最小生成树 最小割
2521: [Shoi2010]最小生成树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 415 Solved: 242[Submit][Statu ...
- BZOJ 2561: 最小生成树(最小割)
U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------- ...
- BZOJ2521:[SHOI2010]最小生成树(最小割)
Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可 ...
- BZOJ2521[Shoi2010]最小生成树——最小割
题目描述 Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的 ...
- 【BZOJ2521】[Shoi2010]最小生成树 最小割
[BZOJ2521][Shoi2010]最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算 ...
- BZOJ2521 最小生成树 最小割
5.26 T2:最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法 ...
- BZOJ.2521.[SHOI2010]最小生成树(最小割ISAP/Dinic)
题目链接 一条边不变其它边减少可以看做一条边增加其它边不变. 假设要加的边lab为(A->B,v),那么肯定是要使除这条边外,A->B的每条路径上的最小权值都\(>v\),这样在连通 ...
- BZOJ 2521 最小生成树(最小割)
http://www.lydsy.com/JudgeOnline/problem.php?id=2521 题意:每次能增加一条边的权值1,求最小代价让一条边保证在最小生成树里 思路:如果两个点中有环, ...
随机推荐
- QT如何设置应用程序的图标
QT如何设置应用程序的图标 准备:.ico格式的图片,可以选择任意其他图片格式的一张图片用格式工厂转换成.ico图片 例如选用的图片是Application.ico 把图片放到工程目录下 在工 ...
- Eclipse下对MAVEN进行junit软件测试
一.Maven project management and build automation tool, more and more developers use it to manage the ...
- 如何使用Git Bash Here,将本地项目传到github上
申请一个github账号 安装git bash git与git bash的区别: git:版本控制工具,支持该工具的网站有Github.BitBucket.Gitorious.国内的osChina仓库 ...
- The Django Book - 第四章 模板
使用模板的最基本方式:1.根据原始模板代码字符串创建一个Template对象2. 使用字典创建一套Context变量3. 调用Template对象的render方法,传入Context变量参数 In ...
- python基础一 day10(1)
要背的:
- Bootstrap-datepicker设置开始时间结束时间范围
$('.form_datetime').datepicker({ format: 'yyyy-mm-dd', weekStart: 1, startDate: '+1', endD ...
- shelll脚本,常见的脚本题目。
[root@localhost wyb]# cat 2quan.sh #!/bin/bash #写一个脚本,先要求输入用户名,然后让他输入一个数字,输的如果是数字给输出yes,不是数字,输出no #然 ...
- iOS 设计模式
很赞的总结 iOS Design Patterns 中文版 IOS设计模式之一(MVC模式,单例模式) IOS设计模式之二(门面模式,装饰器模式) IOS设计模式之三(适配器模式,观察者模式) IOS ...
- iOS 常用尺寸
APP ICON: @1x:57*57 @2x:114*114 @3x:171*171 机型 屏幕尺寸 像素(px)pixel 点(pt)point PPI iphone4s 3.5吋 ...
- (47)zabbix报警媒介:Ez Texting
Ez Texting是zabbix的技术合作伙伴,主要提供短信服务,用手机注册账号,便可以使用它来发送短信了,不过他只支持美国和加拿大的手机号码,并且应该是收费的.没有美国/加拿大手机号码的朋友请绕行 ...