题目

 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上?

输入格式

    第一行包含用空格隔开的两个整数,分别为N和M;

  接下来M行,每行包含三个正整数u,v和w表示图G存在一条边权为w的边(u,v)。

  最后一行包含用空格隔开的三个整数,分别为u,v,和 L;

  数据保证图中没有自环。

输出格式

 输出一行一个整数表示最少需要删掉的边的数量。

输入样例

3 2

3 2 1

1 2 3

1 2 2

输出样例

1

提示

对于20%的数据满足N ≤ 10,M ≤ 20,L ≤ 20;

  对于50%的数据满足N ≤ 300,M ≤ 3000,L ≤ 200;

  对于100%的数据满足N ≤ 20000,M ≤ 200000,L ≤ 20000。

题解

跪了QAQ怎么想得到是网络流,如此之大的范围

我们首先思考一下想要该边加入最小生成树,那么要使得加入这条边时u,v不连通

想想最小生成树的kruskal算法,在长度L之前如果存在一条路径使得u,v联通,那么轮到L时必定无法加入最小生成树

所以我们单独抽出所有权值<L的边,删减若干边使得u,v不连通

这就用到了最小割

最大生成树类似

可以证明,时间复杂度是\(O(M^{1.5})\)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 20005,maxm = 1000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m;
struct EDGE{int to,nxt,f;};
struct node{int a,b,w;}e[maxm];
struct FLOW{
EDGE ed[maxm];
int h[maxn],ne,S,T,vis[maxn],d[maxn],cur[maxn];
void init(){memset(h,0,sizeof(h)); ne = 2;}
void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],0}; h[v] = ne++;
}
bool bfs(){
for (int i = 1; i <= n; i++) d[i] = INF,vis[i] = false;
queue<int> q;
q.push(S); d[S] = 0; vis[S] = true;
int u;
while (!q.empty()){
u = q.front(); q.pop();
Redge(u) if (ed[k].f && !vis[to = ed[k].to]){
d[to] = d[u] + 1; vis[to] = true;
q.push(to);
}
}
return vis[T];
}
int dfs(int u,int minf){
if (u == T || !minf) return minf;
int f,flow = 0,to;
if (cur[u] == -1) cur[u] = h[u];
for (int& k = cur[u]; k; k = ed[k].nxt)
if (d[to = ed[k].to] == d[u] + 1 && (f = dfs(to,min(minf,ed[k].f)))){
ed[k].f -= f; ed[k ^ 1].f += f;
flow += f; minf -= f;
if (!minf) break;
}
return flow;
}
int maxflow(){
int flow = 0;
while (bfs()){
memset(cur,-1,sizeof(cur));
flow += dfs(S,INF);
}
return flow;
}
}G;
int main(){
n = read(); m = read();
for (int i = 1; i <= m; i++)
e[i].a = read(),e[i].b = read(),e[i].w = read();
G.init();
G.S = read(); G.T = read();
int ans = 0,L = read();
for (int i = 1; i <= m; i++)
if (e[i].w < L){
G.build(e[i].a,e[i].b,1);
G.build(e[i].b,e[i].a,1);
}
ans += G.maxflow();
G.init();
for (int i = 1; i <= m; i++)
if (e[i].w > L){
G.build(e[i].a,e[i].b,1);
G.build(e[i].b,e[i].a,1);
}
ans += G.maxflow();
printf("%d\n",ans);
return 0;
}

BZOJ2561 最小生成树 【最小割】的更多相关文章

  1. BZOJ2561最小生成树——最小割

    题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...

  2. 【BZOJ2561】最小生成树 最小割

    [BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在 ...

  3. 【BZOJ-2521】最小生成树 最小割

    2521: [Shoi2010]最小生成树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 415  Solved: 242[Submit][Statu ...

  4. BZOJ 2561: 最小生成树(最小割)

    U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------- ...

  5. BZOJ2521:[SHOI2010]最小生成树(最小割)

    Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可 ...

  6. BZOJ2521[Shoi2010]最小生成树——最小割

    题目描述 Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的 ...

  7. 【BZOJ2521】[Shoi2010]最小生成树 最小割

    [BZOJ2521][Shoi2010]最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算 ...

  8. BZOJ2521 最小生成树 最小割

    5.26 T2:最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法 ...

  9. BZOJ.2521.[SHOI2010]最小生成树(最小割ISAP/Dinic)

    题目链接 一条边不变其它边减少可以看做一条边增加其它边不变. 假设要加的边lab为(A->B,v),那么肯定是要使除这条边外,A->B的每条路径上的最小权值都\(>v\),这样在连通 ...

  10. BZOJ 2521 最小生成树(最小割)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2521 题意:每次能增加一条边的权值1,求最小代价让一条边保证在最小生成树里 思路:如果两个点中有环, ...

随机推荐

  1. QT如何设置应用程序的图标

    QT如何设置应用程序的图标 准备:.ico格式的图片,可以选择任意其他图片格式的一张图片用格式工厂转换成.ico图片     例如选用的图片是Application.ico 把图片放到工程目录下 在工 ...

  2. Eclipse下对MAVEN进行junit软件测试

    一.Maven project management and build automation tool, more and more developers use it to manage the ...

  3. 如何使用Git Bash Here,将本地项目传到github上

    申请一个github账号 安装git bash git与git bash的区别: git:版本控制工具,支持该工具的网站有Github.BitBucket.Gitorious.国内的osChina仓库 ...

  4. The Django Book - 第四章 模板

    使用模板的最基本方式:1.根据原始模板代码字符串创建一个Template对象2. 使用字典创建一套Context变量3. 调用Template对象的render方法,传入Context变量参数 In ...

  5. python基础一 day10(1)

    要背的:

  6. Bootstrap-datepicker设置开始时间结束时间范围

    $('.form_datetime').datepicker({   format: 'yyyy-mm-dd',    weekStart: 1,    startDate: '+1',   endD ...

  7. shelll脚本,常见的脚本题目。

    [root@localhost wyb]# cat 2quan.sh #!/bin/bash #写一个脚本,先要求输入用户名,然后让他输入一个数字,输的如果是数字给输出yes,不是数字,输出no #然 ...

  8. iOS 设计模式

    很赞的总结 iOS Design Patterns 中文版 IOS设计模式之一(MVC模式,单例模式) IOS设计模式之二(门面模式,装饰器模式) IOS设计模式之三(适配器模式,观察者模式) IOS ...

  9. iOS 常用尺寸

    APP ICON: @1x:57*57 @2x:114*114 @3x:171*171  机型 屏幕尺寸   像素(px)pixel  点(pt)point    PPI iphone4s 3.5吋  ...

  10. (47)zabbix报警媒介:Ez Texting

    Ez Texting是zabbix的技术合作伙伴,主要提供短信服务,用手机注册账号,便可以使用它来发送短信了,不过他只支持美国和加拿大的手机号码,并且应该是收费的.没有美国/加拿大手机号码的朋友请绕行 ...