【题目分析】

异或空间的K小值。

高斯消元和动态维护线形基两种方法都试了试。

动态维护更好些,也更快(QAQ,我要高斯消元有何用)

高斯消元可以用来开拓视野。

注意0和-1的情况

【代码】

高斯消元

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; #define maxn 10005
#define ll long long
#define F(i,j,k) for (ll i=j;i<=k;++i)
#define D(i,j,k) for (ll i=j;i>=k;--i) void Finout()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
#endif
} inline ll read()
{
ll x=0;char ch=getchar();
while(ch<'0'||ch>'9')ch=getchar();
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x;
} int T,n,m,tot,zero;
ll bin[65],a[maxn]; void gauss()
{
tot=zero=0;
for (ll i=bin[60];i;i>>=1)
{
int j=tot+1;
while (!(i&a[j])&&j<=n) j++;
if (j==n+1) continue;
tot++;
swap(a[tot],a[j]);
F(k,1,n)
if (k!=tot&&(a[k]&i))
a[k]^=a[tot];
}
if (tot!=n) zero=1;
} ll query(ll x)
{
ll sum=0; x-=zero;
if (!x) return 0;
if (x>=bin[tot]) return -1;
F(i,1,tot) if (x&bin[tot-i]) sum^=a[i];
return sum;
} int main()
{
Finout();
bin[0]=1;F(i,1,60) bin[i]=bin[i-1]<<1;
T=read();
F(z,1,T)
{
memset(a,0,sizeof a);
printf("Case #%d:\n",z);
n=read(); F(i,1,n) a[i]=read();
gauss();
m=read();
while (m--)
{
int x=read();
printf("%lld\n",query(x));
}
}
}

动态维护线形基

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; #define ll long long
#define F(i,j,k) for (ll i=j;i<=k;++i)
#define D(i,j,k) for (ll i=j;i>=k;--i) void Finout()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
#endif
} ll Getll()
{
ll x=0; char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9') { x=x*10+ch-'0'; ch=getchar(); }
return x;
} ll T,Q,n,x,tab,kas=0;;
ll a[10001],lb[70],rk; bool cmp(ll x,ll y)
{return x>y;}
bool cmp2(ll x,ll y)
{return x<y;} int main()
{
scanf("%lld",&T);
while (T--)
{
printf("Case #%lld:\n",++kas);
tab=1;
ll flag=0,cnt=0;
memset(lb,0,sizeof lb);
scanf("%lld",&n);
F(i,1,n) scanf("%lld",&a[i]);
F(i,1,n)
{
D(j,63,0)
if ((a[i]>>j)&1){
if (lb[j]) a[i]^=lb[j];
else
{
cnt++;
lb[j]=a[i];
F(k,0,62)
F(r,k+1,63)
if ((lb[r]>>k)&1)
lb[r]^=lb[k];
break;
}
}
if (!a[i]) flag=1;
}
cnt=0;
for (int i=0;i<=63;++i)
{
if (lb[i]) lb[cnt++]=lb[i];
}
scanf("%lld",&Q);
F(i,1,Q)
{
scanf("%lld",&rk); rk-=flag; ll sum=0;
if (rk>>cnt) printf("-1\n");
else
{
F(j,0,cnt-1) if ((rk>>j)&1) sum^=lb[j];
printf("%lld\n",sum);
}
}
}
}

  

HDU 3949 XOR ——线形基 高斯消元的更多相关文章

  1. HDU 3949 XOR [线性基|高斯消元]

    目录 题目链接 题解 代码 题目链接 HDU 3949 XOR 题解 hdu3949XOR 搞死消元找到一组线性无关组 消出对角矩阵后 对于k二进制拆分 对于每列只有有一个1的,显然可以用k的二进制数 ...

  2. [bzoj 2844]线性基+高斯消元

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2844 又用到线性基+高斯消元的套路题了,因为经过高斯消元以后的线性基有非常好的序关系,所以 ...

  3. [hdu 3949]线性基+高斯消元

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 一开始给做出来的线性基wa了很久,最后加了一步高斯消元就过了. 之所以可以这样做,证明如下. 首 ...

  4. 【bzoj2115】[Wc2011] Xor DFS树+高斯消元求线性基

    题目描述 输入 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图 ...

  5. Codeforces.472F.Design Tutorial: Change the Goal(构造 线性基 高斯消元)

    题目链接 \(Description\) 给定两个长为\(n\)的数组\(x_i,y_i\).每次你可以选定\(i,j\),令\(x_i=x_i\ \mathbb{xor}\ x_j\)(\(i,j\ ...

  6. HDU 5755 Gambler Bo(高斯消元)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5755 [题目大意] 一个n*m由0,1,2组成的矩阵,每次操作可以选取一个方格,使得它加上2之后对 ...

  7. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  8. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  9. 【题解】 bzoj1923: [Sdoi2010]外星千足虫 (线性基/高斯消元)

    bzoj1923,戳我戳我 Solution: 这个高斯消元/线性基很好看出来,主要是判断在第K 次统计结束后就可以确定唯一解的地方和\(bitset\)的骚操作 (我用的线性基)判断位置,我们可以每 ...

随机推荐

  1. 解决Unsupported major.minor version 51.0报错问题

    问题产生原因:计算机环境变量的jdk版本与eclipse使用的jdk版本不一致 解决方法: 1.查看计算机环境变量的jdk版本 2.查看eclipse项目java compiler的方法:在项目点右键 ...

  2. JavaScript面试系列:JavaScript设计模式之桥接模式和懒加载

    我写的程序员面试系列文章 Java面试系列-webapp文件夹和WebContent文件夹的区别? 程序员面试系列:Spring MVC能响应HTTP请求的原因? Java程序员面试系列-什么是Jav ...

  3. Mybatis-Generator逆向生成Po,Mapper,XMLMAPPER(idea)

    前文有一篇手工生成的说明,地址: http://www.cnblogs.com/xiaolive/p/4874605.html, 现在这个补充一下在idea里面的自动版本的数据库逆向生成工具: 一.g ...

  4. UVA1665 Islands (并查集)

    补题,逆序考虑每个询问的时间,这样每次就变成出现新岛屿,然后用并查集合并统计.fa = -1表示没出现. 以前写过,但是几乎忘了,而且以前写得好丑的,虽然常数比较小,现在重新写练练手.每个单词后面都要 ...

  5. iOS的设计备忘录/资源集合(新手快速开发)

    iOS的设计备忘录 随着iOS7更新,风格走上扁平化,大部分iOS设计师及程序员都需要对自己的软件做相关调整,尺寸.Icon.UI等等,我在这里总结一下相关资料,以及提供一些关于iOS7设计素材. 一 ...

  6. Hibernate中get()与load()的区别,以及关于ThreadLocal的使用方法

    一.get方法和load方法的简易理解 (1)get()方法直接返回实体类,如果查不到数据则返回null.load()会返回一个实体代理对象(当前这个对象可以自动转化为实体对象),但当代理对象被调用时 ...

  7. centos7 samba配置完成后不管怎么登陆都会显示密码错误的解决方案

    添加系统用户 useradd samba 添加samba用户 smbpasswd -a samba 激活samba用户 smbpasswd -e samba 1.win+r运行secpol.msc打开 ...

  8. c++ 读取一行的2个数

    #include <iostream> using namespace std; double harmonicMean(double x, double y); int main() { ...

  9. Linux基础学习-Docker学习笔记

    Docker安装 1 官方网站访问速度很慢,帮助文档 2 国内中文网站,帮助文档 [root@qdlinux ~]# yum remove docker \ docker-client \ docke ...

  10. 怎么用js写一个类似于百度输入框的搜索插件

    PS:这次做的这个小插件只是在前端实现,并没有经过数据库.需要用到的的框架:1.bootstrap.css的样式 2.Vue.js 最终效果如下: JS部分: $(window).click(func ...